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Abstract 

 

In the field of metal casting, solute composition inhomogeneities at the macroscale are called 

macrosegregation, and the transition from the elongated grains in the outer portions of a casting to 

the more rounded grains in the center is termed Columnar to Equiaxed Transition (CET). 

Simultaneous prediction of macrosegregation and CET is still an important challenge in the field. 

One of the open questions is the role of melt convection on the CET and the effect of the CET on 

macrosegregation. A three-phase macroscale model for macrosegregation and CET was 

developed. The model accounts for numerous phenomena such as columnar dendrite tip 

undercooling, undercooling behind the columnar tips, and nucleation of equiaxed grains. This 

three-phase model was used to develop a less complex model that consists of two phases only and 

disregards undercooling behind the columnar tips and nucleation of equiaxed grains. An in-house 

parallel computing code on the OpenFOAM platform was developed to solve the equations of 

these models. The models were used to perform columnar solidification simulations of a numerical 

benchmark problem. It was found that the predictions of these models are nearly identical. It was 

also found that the dendrite tip selection parameter, which appears in the constitutive relation for 

the dendrite tip velocity, plays a key role in these models. With a realistic value for this parameter 

these models account for columnar dendrite tip undercooling, but as its value is increased in the 

simulations, predictions of these models converge to predictions of a model that neglects 

undercooling. Next, the three-phase model was used to perform CET simulations in the numerical 

solidification benchmark problem in the presence of melt convection. It was found that accounting 

for stationary equiaxed grains does not change the overall macrosegregation pattern nor the form 

of channel segregates. Finally, for the first time in the field of solidification, we developed accurate 

constitutive relations for macroscale solidification models that are based on a formal mesoscale 

analysis on the scale of a representative elementary volume that is used in developing volume-

averaged macroscale models. This upscaling enabled us to present relations that incorporate 

changes in the shape of grains and solute diffusion conditions around them during growth. The 

models and constitutive relations we developed can now be used to predict critical phenomena 

such as macrosegregation, channel segregates, and CET in castings. 
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Public abstract 

 

The metal casting industry continues to struggle with the formation of defects, which weaken 

the overall quality of the cast products. Castings are rejected during the quality control stage of the 

manufacturing process, creating not only significant financial losses for the foundries but also 

environmental costs. One of the most common defects is macrosegregation. Macrosegregation 

refers to the solute composition inhomogeneities at the macroscale. Another important phenomena 

in metal casting is the transition from the elongated grains in the outer portions of a casting to the 

more rounded grains in the center. Understanding this transition is fundamental to determining 

what type of grain structure forms in castings of most metal alloys. Predicting macrosegregation 

and CET before casting a product is therefore critical for the industry. Simultaneous prediction of 

macrosegregation and the CET is, however, still an important challenge in the field. One of the 

open questions is the role of melt convection on the CET and the effect of the CET on 

macrosegregation. In this study, macroscale models for macrosegregation and CET were 

developed. These models account for numerous phenomena such as liquid undercooling and 

nucleation of equiaxed grains. The models were used to perform simulations of a numerical 

solidification benchmark problem. It was found that accounting for undercooling and/or the 

nucleation of motionless equiaxed grains does not change the overall macrosegregation pattern, 

but changes the form and number of the predicted channel segregates. Finally, for the first time in 

the field of solidification, mesoscopic simulation results were upscaled to develop accurate 

constitutive relations for macroscopic modeling of solidification. This upscaling enabled us to 

present relations that incorporate changes in the shape of grains and solute diffusion conditions 

around them during growth. 
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Chapter 1: Introduction 

 

1.1 Background and motivation 

 

The transition from the elongated grains in the outer portions of a casting to the more rounded 

grains in the center is termed columnar to equiaxed transition (CET). CET has fascinated 

researchers in the solidification area for more than 50 years (1). Understanding CET is fundamental 

in determining what type of grain structure forms in castings of most metal alloys. Often, a fully 

equiaxed structure is preferred, but the fully columnar structure of many turbine blades are an 

important exception. Realistic modeling and simulation of CET is still very challenging, because 

it requires one to simultaneously take into account numerous physical phenomena at several length 

scales: heat/solute transfer, melt flow, nucleation of equiaxed grains, and growth of columnar and 

equiaxed grains into an undercooled melt.  

 

In the past decade, there have been numerous modeling efforts to address the challenging problem 

of CET. Most of these efforts are based on the framework developed in the pioneering work of 

Wang and Beckermann (2). These authors used their framework to develop a model for equiaxed 

solidification in the presence of melt convection and a model for CET in the absence of melt 

convection. Martorano et al. (3) used the same framework to develop another model for CET in 

the absence of melt convection. In addition to disregarding melt convection, these CET models are 

based on constitutive relations that are overly simplified. For example, these relations do not 

incorporate the changes in the shape of the equiaxed grains during growth.  

 

1.2 Objective of the present study 

 

The main objectives of this study is to use the framework of Wang and Beckermann (2) to develop 

a model for CET in the presence of melt convection and to develop more accurate constitutive 

relations for equiaxed growth. Incorporating melt convection in our CET model, allows one to 

predict macrosegregation and CET simultaneously. The model that is developed for CET in the 

presence of melt convection is used to derive a simpler, two-phase model for macrosegregation in 
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the presence of primary dendrite tip undercooling. These models are analyzed in detail and their 

predictions are compared with the predictions of a model that is available in the literature and 

neglects the liquid undercooling entirely. Finally, for the first time in the field of solidification, we 

developed accurate constitutive relations for macroscale solidification models that are based on a 

formal mesoscale analysis. This upscaling enabled us to present relations that incorporate changes 

in the shape of grains and solute diffusion conditions around them during growth. 
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Chapter 2: Literature Review 

 

In this chapter, the concept of multiphase modeling of solidification is introduced first. Then, the 

CET and macrosegregation models that are available in the literature are reviewed. It is noted that 

the literature review in this chapter is intended to provide only the background knowledge that is 

necessary to understand the rest of the thesis and more detailed review on the specific topics will 

be provided in the next chapters as they become directly relevant.   

 

2.1 Multiphase macroscale modeling of solidification 

 

Using computational models that can make predictions on the engineering scale is now 

commonplace in almost every engineering field (4-7). In the field of solidification, computational 

macroscale models is specifically challenging because realistic macroscopic modeling of 

solidification requires one to consider phenomena taking place at the microscale and mesoscales. 

However, with the current available computational resources, it is practically impossible to solve 

the transport equations at the micro and macro scales simultaneously. To overcome this limitation, 

a so-called micro-macroscopic modeling approach was introduced in the mid-1980s. The main 

goal in this modeling approach is to incorporate fundamental microscale phenomena (such as 

nucleation, grain growth, etc.) in the macroscopic transport equations, only to the extent that they 

influence macroscopic behavior. To develop a macroscopic model that account for microscale 

phenomena, the microscopic conservation equations for each phase are formally averaged over a 

Representative Elementary Volume (REV). The outcome of this averaging procedure is a volume-

averaged macroscopic model where equations contain phase-interaction terms, which represent 

the effect of microscale phenomena on the macroscopic phenomena, such as columnar-to-equiaxed 

transition or macrosegregation. The phase interaction terms need to be modeled through 

constitutive relations.  

 

One of the first volume-averaged solidification models was the two-phase model developed by Ni 

and Beckermann (8). The model consists of separate volume-averaged conservation equations for 
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the solid and liquid phases. Different types of growth, i.e. columnar/equiaxed, can be consistently 

incorporated into the model through the constitutive relations.  

 

Two-phase volume-averaged solidification models cannot adequately reflect the microscale 

phenomena in the final macroscopic equations (9). This is because these models describe the phase 

behaviors by a single scale averaging, which makes no distinction between properties of phases 

associated with different microscopic length scales. In dendritic growth, however, there are at least 

three different microscopic length scales: 1) primary arm spacing, 2) secondary arm spacing, and 

3) dendrite tip radius. These scales are all smaller than the characteristic size of an averaging 

volume. Models based on single scale averaging do not provide sufficient resolution to capture the 

transport phenomena happening on these multiple length scales. However, such resolution is 

indeed required for an adequate incorporation of microscopic effects in any macroscopic model. 

Therefore, there was a need to develop multi-phase/-scale models for solidification.  

 

2.1.1 Multiphase macroscale models of solidification 
 

 

Wang and Beckermann (10) proposed a multi-phase/-scale macroscopic model for dendritic 

solidification. The model consists of three phases: 1) solid, 2) inter-dendritic liquid, and 3) extra-

dendritic liquid. The two liquid phases are distinguished by their different interfacial length scales; 

and are separated by a smooth surface connecting the primary and secondary dendrite arm tips, i.e. 

dendrite envelope. Introducing this new interface enables one to incorporate more microscale 

details (compared to the two-phase models) in the macroscopic model and transfer information 

from two different length scales.  

 

Wu and Ludwig developed a five-phase model for mixed columnar/equiaxed solidification (11). 

These phases include three so-called "thermodynamic phases" and two so-called "hydrodynamic 

phases". The three distinct thermodynamic phases are: 1) solid, 2) inter-dendritic liquid, and 3) 

extra-dendritic. The two hydrodynamic phases are: 1) extra-dendritic liquid, and 2) combined solid 

and inter-dendritic liquid. This indicates that the solid and inter-dendritic liquid phases are 

assumed to have the same velocity.  They later presented a model for globular/dendritic equiaxed 
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solidification (12) and then improved it further for globular/dendritic mixed equiaxed/columnar 

solidification (11, 13).  

 

Very recently, Martorano et al. (14) introduced a multi-phase multi-grain model for the equiaxed 

solidification.  The model consists of an extra-dendritic liquid phase and phases representing 

different classes of grains. Each class of grains consist of grains that have nucleated within a same 

time interval. Grains in the same class have equal size and growth velocity which is calculated 

individually for each class.  

 

2.2 Studies on columnar-to-equiaxed transition 

 

The transition from the elongated grains in the outer portions of a casting to more rounded grains 

in the center in called Columnar-to-Equiaxed transition (CET) (15). The equiaxed grains nucleate 

and grow in the constitutionally undercooled liquid ahead of the moving columnar front. The CET 

occurs when the equiaxed grains block the movements of the columnar front.  

 

Next, studies on CET are reviewed in two sections: first models to predict CET and then 

experimental observations of CET.   

 

2.2.1 CET models  
 

Hunt (16) proposed the first CET mechanism which is now referred to as mechanical-blocking. 

The hypothesis behind this mechanism is that equiaxed grains nucleate and grow in the 

constitutionally undercooled liquid region ahead of the columnar front. If the volume fraction of 

the equiaxed grains just ahead of the columnar front becomes greater than 0.49, equiaxed grains 

will mechanically block further advancement of the front; therefore, CET will occur.  Hunt’s 

criterion has been widely used in the literature to predict CET, but the mathematical derivation of 

the criterion is based on empirical equations. Furthermore, Hunt’s assumption that the blocking 

will take place when the equiaxed grain fraction reaches 0.49 is somewhat arbitrary. In fact, 

Biscuola and Martorano (17) showed that, at least for the Al-Si alloys, using the equiaxed blocking 

fraction of 0.2 will result in CET predictions that are in better agreement with experiments.  
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Gandin (18) proposed the concept of constrained-to-unconstrained growth transition as a CET 

mechanism. Growth is considered constrained when the liquid is superheated and its thermal 

gradient is positive. On the other hand, growth is considered unconstrained when the columnar 

front reheats the liquid; therefore, makes the temperate gradient in the liquid negative. Gandin 

developed a one-dimensional model and performed experiments on the upward directional 

solidification of Al-Si ingots. He found that during the initial stages of solidification, when growth 

is constrained, tip velocity increases with time. Later on, when the growth becomes unconstrained, 

the tip velocity decreases with time. Therefore, the time evolution of the tip velocity will 

experience a maxima and this maximum coincides with the CET position. 

 

To overcome the shortcomings of the mechanical blocking criterion, Martorano et al. (3) 

introduced the concept of solutal-blocking. The physical basis of this criterions is as follows: 

equiaxed grains can nucleate and grow in the constitutionally undercooled region ahead of the 

columnar front. These grains reject solute into the liquid surrounding the grains and enrich it. When 

the liquid ahead of the columnar front is highly enriched the local undercooling becomes zero; 

and, therefore, the columnar gets solutally blocked. To incorporate this concept into the 

mathematical model, the undercooling had to be defined relative to the average local liquid solute 

concentration, rather than the initial liquid concentration, as was done by Hunt. As a result of this 

new definition for undercooling, when the liquid concentration reaches the equilibrium 

concentration locally, the local undercooling ahead of the columnar front becomes zero and the 

columnar front stops: CET happens.  

 

Martorano et al. (17) compared the solutal and mechanical blocking mechanisms. They found out 

that for small thermal gradients the solutal-blocking mechanism results in the same CET 

predictions as the mechanical-blocking mechanism. However, for intermediate values of thermal 

gradients, there is a significant difference between the predictions of two mechanisms: solutal 

blocking predicts earlier CET. The reason is that at the intermediate thermal gradients, the solutal 

interactions between the growing equiaxed grains and advancing columnar front are important and, 

when considered, will result in earlier CET.  
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Browne (19) proposed the Peak Equiaxed Index Criterion for CET. Equiaxed index is a measure 

of the total undercooling in the bulk liquid. At the start of solidification, its value is zero and 

increases with the size of the undercooled liquid region. At later times, when the size of the 

undercooled liquid region decreases to zero, the equiaxed index also decreases to zero. As a result 

of the initial increase and the subsequent decrease, the time evolution of the equiaxed index 

criterion will have a maxima. According to the peak equiaxed index criterion, CET happens when 

equiaxed index reaches its maxima.  

 

Mcfadden et al. (20) compared constrained-to-unconstrained, critical cooling rate, and Peak 

equiaxed index CET criteria. Prediction of CET using these criteria does not require one to 

consider equiaxed nucleation; therefore, they are typically termed indirect CET criteria. The 

constrained-to-unconstrained and peak-equiaxed-index criteria predicted a CET position which 

agreed well with the experimental observations. However, the critical cooling rate criteria did not.  

Close to the CET position, the cooling rate at the columnar front reached a critical minimum value 

(as expected by the cooling rate criterion). However, the value of this minimum was different from 

the values previously reported by Peres et al. (21). The difference was because, in evaluating the 

cooling rate at the position of the columnar front, Peres et al. (21) did not take into account the 

columnar tip undercooling. It was recommended that, in predicting CET in simulations, if equiaxed 

nucleation is not taken into account, then the critical cooling rate criterion should not be used.  

 

Ludwig and Wu (22) used their three-phase model (23), reviewed in the previous section, to predict 

CET using both solutal and mechanical mechanisms. They recommended that, especially in the 

presence of melt convection and grain sedimentation, accurate predictions of CET requires one to 

consider both mechanisms.  

 

2.2.2 CET experiments 
 

In this section we will review experimental studies of the CET. These experiments are introduced 

in two sections: 1) one earth experiments, i.e. CET in the existence of gravity, and 2) microgravity 

experiments.  
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2.2.2.1 On-earth CET experiments 

 

On-earth CET experiments are reviewed in two sub-sections: 1) experiments without melt flow 

and 2) experiments with significant (buoyancy induced) melt flow.  

 

2.2.2.1.1 Experiments without melt flow 

 

Ares and Schvezov (24) studied the effect of cooling rate and alloy composition on the CET in 

upward directional solidification of  Pb-Sn alloys. CET occurred when the columnar front 

temperature gradient dropped below 0.8 Kcm-1. This value was estimated from the experimental 

cooling curves. It was observed that the CET does not take place in a sharp plane, but rather in a 

zone where and a fully columnar structure gradually transitions into a fully equiaxed structure and 

the columnar and equiaxed grains coexist. The thickness of this "coexisting" zone was about 1 cm. 

Ares et al. observed similar progressive CET mode in An-Al (25) and Al-Cu (26) alloys.  

 

Mahapatra and Weinberg (27) studied CET during upward directional solidification of Sn-Pb 

alloys. A one dimensional model that does not account for the columnar tip undercooling was used 

to estimate the temperatures gradients in the casting. The boundary conditions for the model were 

extracted from the measured temperatures. It was found that CET happens when the columnar 

front temperature gradient reaches the critical value of 0.112 Kmm-1.  

 

Siqueira et al. (28, 29) conducted a similar experiment but with a higher heat extraction rate. The 

same procedure was used to calculate liquidus isotherm velocity and the temperature gradient at 

the position of liquidus isotherm. Their data did not support the CET criterion of Mahapatra and 

Weinberg (27). In fact, the columnar tip velocity and the temperature gradient at the location of 

CET were more than two times different from the values reported in Mahapatra and Weinberg 

(27). However, the tip cooling rate at the CET position agreed with the results of Mahapatra and 

Weinberg (27). Hence, they suggested that, a more realistic CET criterion should be based on the 

columnar front cooling rate rather than the temperature gradient ahead of the columnar front (as 

originally proposed by Mahapatra and Weinberg). The critical cooling rate, which was found to 

be independent of the solute content of the alloy or the imposed thermal conditions, was 0.01 Ks-
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1 for Sn-Pb alloys and 0.2 Ks-1 for Al-Cu alloys. These critical cooling rates were specific to the 

alloy system but independent of the composition. However, one should note that, in both of these 

studies, the model that was used to estimate the thermal conditions at the columnar front did not 

take into account columnar tip undercooling. In other words, the temperature gradient and the 

isotherm velocity at the columnar front were assumed to be equal to the temperature gradient and 

the isotherm velocity at the liquidus respectively. Similar experiments were conducted by Peres et 

al. (21) with the Al-Si alloys with the Si content ranging between 3 to 9 wt. pct. The critical cooling 

rate for this system was found to be between 0.15 and 0.2 Ks-1. In another study, the critical cooling 

rate for Al-Ni and Al-Sn systems was found to be 0.3 and 0.16 Ks-1 (30).  

 

2.2.2.1.2 Experiments with melt flow 

 

Spinelli et al. (31) performed experiments on the influence of melt convection on CET in 

downward directional solidification of Sn-Pb alloys. The observed that melt convection transports 

the dendrite fragments from the semi-solid mush into the bulk liquid. These fragments promote 

equiaxed nucleation and therefore, stimulate CET. The critical cooling rate for CET was found to 

be 0.03 Ks-1.  

 

Hachani et al. (32, 33) performed benchmark solidification experiments involving Sn-Pb with 

different cooling rates and nominal solute concentrations of 3, 6, and 10 wt. pct.. CET was 

observed for all solute concentrations. The size of the final equiaxed zone increased with the 

nominal solute concentration. 

 

 
2.2.2.2 Microgravity experiments 

 

Lie et al. (34) carried out directional solidification experiments under microgravity with both 

refined and non-refined Al-7 wt. pct. Si alloys. They examined different pulling velocities. When 

the pulling velocity was low, CET was observed to be progressive (i.e. the transition from a fully 

columnar structure to a fully equiaxed structure happened over a region). This is because, at low 

velocities, the constitutional undercooling ahead of the columnar front is low; therefore nucleation 
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will be slow. Slow nucleation will give old equiaxed grains enough time to elongate before they 

get blocked by new equiaxed grains. Elongated equiaxed grains will ultimately form a columnar-

like zone in casting and CET will be progressive. On the other hand, at high pulling velocities, 

fast-repeated nucleation of new equiaxed grains will prevent the elongation of old equiaxed grains 

and, therefore, CET will be sharp.  

 

In a later study, Lie et al. (35) simulated only the refined alloys in the above experiment and 

investigated two additional variables: (1) the thickness of the undercooled liquid region and (2) 

the maximum constitutional undercooling in this region. They found out that the thickness of the 

undercooled liquid region, rather than the maximum constitutional undercooling, is responsible 

for the different CET modes: sharp or progressive. A thick undercooled liquid region will promote 

the sharp CET mode. They also found out that there is a critical thermal gradient below which 

grain-elongation is controlled by thermal gradient and above which grain-elongation is controlled 

by the liquidus velocity.  

 

Reinhart et al. (36) performed experiments and simulations of CET in the upward directional 

solidification of Al-3.5 wt. pct. Ni alloys. In the experiments, CET position was extracted (or 

measured) from X-ray radiographs showing the time evolution of the columnar front. In the 

simulations, CET was predicted by a 2D CAFÉ model, in the presence and absence of melt 

convection. CET predictions were in agreement with the experiments only when melt convection 

was considered. 

 

2.3 Studies on macrosegregation 

 

Solute composition inhomogeneities at the macro-scale (scale of whole casting) are termed 

macrosegregation (15). Macrosegregation forms when the micro-segregated melt adjacent to the 

solid is swept away by the relative motion between the solid and its adjacent liquid(37). This 

relative movement can be caused by: 1) solidification shrinkage, 2) natural or forced convection, 

3) grain movement, and 4) deformation of the mushy zone, and 5) motion of gas bubbles that might 

develop during the solidification. The reader is referred to reference  (15) for more information on 

how each of these mechanisms can cause macrosegregation.  
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Bellet et al. (38) proposed  a numerical benchmark solidification problem with the objective of 

testing the different numerical algorithms and verifying different numerical codes. The benchmark 

uses a simple solidification model (infinite back diffusion in solid, fully columnar, no tip 

undercooling, and no solid motion) and the problem consists of Sn-Pb and Pb-Sn alloys solidifying 

in a rectangular cavity cooled from the side. In a later study, Combeau et al. (39) analyzed results 

from four different codes/contributors for this benchmark. The overall segregation patterns 

predicted by different codes was similar; however, in the regions where channels exist, predictions 

were noticeably different. One of the sources contributing to this difference was the discretization 

of the convection term in the liquid solute balance equation. It was conclude that, when channels 

form, it is unrealistic to seek a unique reference solution. 

 

Combeau and co-workers have studied macro-segregation and channel segregates. For example, 

Kumar et al. studied the effects of various types of permeability relations on the predicted macro-

segregation and channel segregates. The permeability predicted by these relations were different 

only in the near liquidus regions of the mush. The predicted channels were found to be very 

sensitive to the choice of the permeability relation. Only relations that permitted bulk liquid to 

penetrate into the near-liquidus regions of the mush predicted channels. In a later study, Kumar et 

al. (40) incorporated inertial effects into his model by adding a quadratic Forchheimer drag term 

to the liquid momentum equation and investigated the effects of inertia on macro-segregation. 

Adding the Forchheimer term hardly changed the global macro-segregation pattern; however, it 

slightly reduced the number of predicted channels. In another study, Kumar et al. (41) investigated 

the effect of numerical integration of the permeability term and the mesh size on the predicted 

macro-segregation and channel segregates. Predicted macro-segregation was not sensitive to the 

numerical treatment of the permeability term. Predicted channels, however, were sensitive to 

numerical treatment of the permeability term but only on the coarse mesh (1 mm). They also 

showed that, since channels can be as narrow as 1 mm, fully resolving them requires one to use 

mesh size as fine as 0.2 mm.  

 

Felice et al. (42) presented a three-dimensional simulation of channel formation. At low dendrite 

arm spacing (i.e. low permeability), channels had a two-dimensional lamellar structure; however, 
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as arm spacing increases, channels become lamellar-tubular with some three-dimensional 

structures. As arm spacing increases even further, the structure becomes branched-tubular which 

is fully three-dimensional. Even when arm spacing is high enough, to result (or resulting) in a 3D 

branched-tubular structure, the initial growth of channels is still two-dimensional lamellar, and the 

structure gradually transitions to the final three-dimensional tubular structure.    

 

Ludwig and Wu (43-45) used their two-phase columnar solidification model to study the formation 

of channel segregates. They showed that channel segregates form only in the regions where flow 

suppresses the local solidification rate. They termed these regions solidification-retarded zones 

and showed that: 1) re-melting is not necessary for channel formation (2) the predominant structure 

of channels is discontinuous lamellar. They hypothesized that, after a channel forms, the 

interaction between flow and solidification will determine if the channel can survive or not. These 

interactions are correlated with the u lC  term in the liquid solute balance equation, which they 

name the flow-solidification interaction term. Channels can survive only in the regions where this 

term is negative. This is because, in these regions, an increase in flow velocity suppresses the local 

solidification rate, which promotes channel growth. Channel growth, in return, strengthens (or 

reinforces) flow, and hence, the flow-solidification interaction term decreases further below zero 

(instead of more negative). Thus, channels grow and become stable.  
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Chapter 3: A truncated-Scheil-type macroscale model for columnar 

solidification of binary alloys in the presence of melt convection 

 

 

3.1 Abstract 

 

A truncated-Scheil-type macroscale model is developed for columnar solidification of binary 

alloys in the presence of melt convection. The model assumes Scheil type solidification behind the 

primary tips and accounts for columnar dendrite tip undercooling. It is used to perform simulations 

of a numerical solidification benchmark problem. The predictions of the model in the absence and 

presence of melt convection are compared with the predictions of the Scheil model, which neglects 

undercooling entirely, and a three-phase model, which accounts for undercooling both behind and 

ahead of the primary tips. It is found that the truncated-Scheil-type and three phase models predict 

nearly identical results. This indicates that, for columnar solidification, the undercooling behind 

the primary tips can be disregarded and the model developed here can be used instead of the 

significantly more complex three-phase models. It was found that by increasing a parameter in the 

model, its predictions smoothly converge to the predictions of the Scheil model. The effect of 

undercooling on the melt convection during solidification, overall macrosegregation pattern, and 

the channel segregates is also investigated.  

 

3.2 Introduction 

 

Solidification on earth, where the gravity is present, typically occurs in the presence of melt 

convection. Melt convection is the main reason for defects such as macrosegregation, which is the 

solute composition inhomogeneities at the macro scale, and the only reason for the formation of a 

critical defect known as channel segregates, which are narrow pencil-like macrosegregation 

patterns that are highly enriched by various solute elements. These defects can be predicted only 

if melt convection is incorporated in models. Due to practical importance, incorporating melt 

convection in solidification models has been the subject of numerous studies in the past. The 

simplest models that account for melt convection are models that neglect undercooling and assume 
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lever/Scheil type solidification (which refer to solidification with infinite/zero solute back-

diffusion from liquid to solid). These models consist of two phases only: a solid and a liquid phase. 

Having only two phases makes the numerical implementation of these models relatively simple 

and they have been, therefore, used extensively in the literature to predict macrosegregation and 

channel segregates. But, again, these relatively simple models neglect undercooling (15).  

 

Accounting for undercooling in solidification models can be expected to be in general important 

because undercooling is crucial in determining the velocity of the columnar primary tips (15).  In 

addition, complex phenomena such as columnar to equiaxed transition can be predicted only if 

undercooling is taken into account. In the literature, models that incorporate undercooling and melt 

convection are available. These model are typically based on the framework developed in the 

pioneering work of Wang and Beckermann (10). A model developed using this framework consist 

of three phases: a solid phase, an inter-dendritic liquid phase, and an extra-dendritic liquid phases. 

Existence of an additional liquid phase in the model makes the numerical implementation of these 

models significantly more complex than the models that do not account for undercooling and 

consist of only two phases. In addition, computational cost of these models are so high that mesh 

sensitive phenomena such as channel segregates are rarely fully resolved (46).  

 

In this chapter, a two-phase model for columnar solidification is developed that incorporates melt 

convection and primary tip undercooling. This model is referred to as the truncated-Scheil-type 

model, instead of truncated-Scheil, because similar to the original truncated-Scheil model (47) it 

assumes Scheil type solidification behind the primary tips, but unlike that model it accounts for 

melt convection. Predictions of the model in the absence and presence of melt convection are 

compared with the Scheil model and a three-phase model that account for undercooling behind the 

primary tips. The effect of undercooling on the melt convection during solidification, overall 

macrosegregation pattern, and the channel segregates is investigated.  

 

The rest of the chapter is organized as follows: the three-phase, truncated-Scheil-type, and Scheil-

type models are introduced in section 3.3. In section 3.4, the numerical scheme that was developed 

to update the solid fractions in the simulations is discussed. In section 3.5, the solidification 
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numerical benchmark problem is introduced. Finally, in section 3.6, predictions of the models in 

the absence and presence of melt convection are discussed.  

  

3.3 Mathematical models  

 

In this section, a brief introduction of the three models that have been used in this study is first 

given. Then, the derivation of the equations of these models is discussed.  

 

3.3.1 Three-phase model, truncated-Scheil-type model, and Scheil-type model 
 

The first model in this chapter is a three-phase model that does not make any simplifying 

assumptions regarding the liquid undercooling. In other words, it accounts for liquid undercooling 

everywhere in the domain: both behind and ahead of the primary tips. This model is developed 

using the framework develop in the pioneering work of Wang and Beckermann (10). The reader 

is referred to that chapter for more details. This framework has been widely accepted in the 

literature. In brief, models based on this framework consist of three phases: solid, inter-dendritic 

liquid, and extra-dendritic liquid. The difference between the two liquid phases is that the inter-

dendritic liquid is well-mixed and is at the equilibrium concentration while the extra-dendritic 

liquid is, in general, undercooled. Wang and Beckermann (2, 48, 49) used this framework to 

develop a model for equiaxed solidification in the presence of melt convection and a model for 

columnar and equiaxed solidification in the absence of melt convection (50). In this chapter, the 

framework of Wang and Beckermann (10) is used to develop a model for columnar solidification 

in the presence of melt convection. The main difference between this model and the model of 

Wang and Beckermann (2, 48, 49) is that the latter model was for equiaxed solidification only and 

therefore did not require tracking of the columnar front.  

 

The second and third models in this chapter are truncated-Scheil-type and Scheil-type models that 

consist of a solid phase and only one liquid phase, as opposed to the three-phase model which 

consists of two liquid phases. These models assume that solidification inside the semi-sold mush 

takes place under equilibrium conditions: with zero liquid undercooling and with no solute back-

diffusion from the liquid to solid. The only difference between these two models is that the 
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truncated-Scheil-type model accounts for liquid undercooling ahead of the primary tips while 

Scheil-type model neglects liquid undercooling entirely.   

 

3.3.2 Equations for conservation of mass, momentum, energy, and solute in solid  
 

The continuity equation in terms of the mixture velocity mv , which, in the absence of solid motion, 

is equal to l lg v ,  reads (38) 

 

  0l l mg     v v  (3-1) 

 

The liquid momentum equation in terms of the liquid velocity reads (38) 

 

     
2

0 0
l l

l l l l l l l l l l l l

g
g g g p g g

t K

   
             

v v v v g v  (3-2) 

 

where 0 , lg , lv , p , l , l , and K  are the reference density, liquid fraction, average liquid 

velocity, average pressure, liquid dynamic viscosity, liquid density in the buoyancy term, and the 

permeability of the semi-solid mush. The liquid density in the buoyancy term is calculated from 

   0 1l T ref C l refT T C C           (38), where T  and C  are the thermal and solutal 

expansion coefficients, respectively, and  refT  and refC  are the reference temperature and solute 

concentration, respectively. The permeability of the semi-solid mush is calculated from the 

Kozeny-Carman relation:  22 3
2 180 1l lK g g    

 (38), where 2  is the secondary arm 

spacing.  

 

It is common to re-write equation (3-2) in terms of the mixture velocity mv .  The first term on the 

left-hand side and the second and fourth terms on the right-hand side can be easily written in terms 

of mv  using m l lgv v  (see the discussion above equation (3-1)). To re-write the second term in 

terms of mv ,  one needs to first recognize that 

         1l m l m l m l m mg        v v v v v v v v , where the first equality holds for any pair 
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of vectors lv  and mv , and the second equality follows simply from equation (3-1); the right-hand 

side of the second equality can be re-written as        m m m m m m m m       v v v v v v v v

. Combining these two relations one gets      1l l l l m mg g    v v v v  and substituting this into 

equation (3-2) gives the final momentum equation in terms of the mixture velocity mv  

 

   0 0

1m l l
m m l l m l l m

l

g
g p g

t g K

   
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


v
v v v g v  (3-3) 

 

The energy equation reads (38) 

 

  2
0

sl s
m

p

h gT
T T

t c t



   

 
v  (3-4) 

 

where T , 0 , slh , pc , and 1s lg g   are the temperature, thermal diffusivity, latent heat, 

specific heat capacity, and solid fraction, respectively.  

 

As discussed in section 3.3.1, the three models introduced in this chapter assume that there is no 

solute back-diffusion from the liquid to the solid and therefore the solute conservation equation in 

the solid is written as (38) 

 

  *
0

s
s s l

g
g C k C

t t




 
 (3-5) 

 

3.3.3 Solute conservation in liquid(s) 
 

The main difference between the three-phase, truncated-Scheil-type, and Scheil-type models is in 

the equation for the solute balance in liquid. The derivation of this equation for each of the models 

is discussed next. 

 

3.3.3.1 Three-phase model  
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In the three-phase model, the solute conservation equation in the inter-dendritic liquid reads (2, 

10, 48, 49) 

 

     0
0 0 0 0

env
d d d l d sd d ed d d e

env

S D
ρ g C ρ g C k Γ C Γ C ρ C C

t δ


      


v  (3-6) 

 

where dg , dC , sdΓ , edΓ , envS , envδ , and eC  are the inter-dendritic liquid fraction, average solute 

concentration in the inter-dendritic liquid, the average interfacial mass generation source due to 

phase-change at the interface between the solid and inter-dendritic liquid and the interface between 

inter-dendritic liquid and extra-dendritic liquid, surface area of the envelope per unit volume of 

the REV, average diffusion length around the envelope. The   solute conservation equations in the 

extra-dendritic liquid reads (2, 10, 48, 49)  

 

     0
0 0 0

env
e e e l e ed d d e

env

S D
ρ g C ρ g C Γ C ρ C C

t δ


    


v  (3-7) 

 

where 1e s dg g g    is the extra-dendritic liquid fraction.  

 

Next, in equations (3-7) and (3-8), the convective fluxes on the left-hand side (i.e., dg v  and e lg v

) and the interfacial mass generation sources due to phase-change on the right-hand side (i.e., sd  

and ed ) need to be rewritten in terms of the mixture velocity m l lgv v  and phase fractions, 

respectively.  To substitute  sd  and ed , one first need to write the continuity equations for the 

solid and extra-dendritic liquids, which read (2, 10, 48, 49) 
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and envw  is the average growth velocity of the envelope. Substituting edΓ  from the first equality in 

equation (3-9) and noting that 

         e l e m e l e e l m e e m e lg C g g C g g C C g g       v v v v  (where the first equality 

follows directly from the discussion above equation (3-1) and the second equality follows from 

the mathematical identity governing the divergence of a product of a scalar and a vector and 

equation (3-1)) equation (3-7) becomes  

 

       0e e e e env
e m e d e d e m d e

l l env

C g g g S D
g C C C C C C C

t g t g δ

  
              

v v  (3-10) 

 

Similarly, sdΓ  and edΓ  on the left-hand side of equation (3-6) can be substituted using equations 

(3-8) and (3-9), respectively, and the last term can be substituted from equation (3-10) to get 

 

       

     
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           
   

             

v v

v v

 (3-11) 

 

Now if the time and spatial derivatives on the left-hand-side are expanded, then the terms inside 

the second brackets on the right-hand-side can be dropped by their counterparts on the left-hand 

side and the result will be  
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             

v

v v

 (3-12) 

 

Next, equation (3-12) needs to be re-written in the conservative form, where the inner product on 

the left-hand side is substituted by a divergence, and in terms of the mixture velocity mv  only. 

Using            d e m e l m e l d e m e l d eC C g g g g C C g g C C           v v v  and  
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        d l d l e m l d m d e l m dg C g g g C C g g C      v v v v , equation (3-12) becomes  

 

       01d s e
l m d d e e d m e d

l

C g g
g C k C g C C C C

t t t g

                    
v v  (3-13) 

 

Next, equations for the solute balance in the inter-dendritic and extra-dendritic liquids (i.e., 

equations (3-6) and (3-7)) are used to derive the equation for the solute balance in the liquid for 

the truncated-Scheil-type and Scheil-type model.  

 

3.3.3.2 Truncated-Scheil-type and Scheil-type models  

 

As already discussed in sub-section 3.3.1, the truncated-Scheil-type model has only one liquid 

phase and the equation for solute conservation in this phase needs to be written in terms of the 

average solute concentration in liquid lC , which is defined as  

 

l l d d e eg C g C g C   (3-14) 

 

The equation for lC  is obtained by adding-up equations (3-7) and (3-6), substituting d d e eg C g C  

from equation (3-14), l lg v  from the first equality in equation (3-1),  sd  from equation (3-8), and 

using *
d s l sC g t C g t      as 

 

    *
0 0 0

s
l l m l l

g
ρ g C ρ C k C

t t


    

 
v  (3-15) 

 

Expanding the time derivative on the left-hand side and adding and subtracting 0 l lk C g t   to and 

from the right-hand side gives  
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The truncated-Scheil-type and Scheil-type models assume that in the presence of solidification 

(i.e., behind the columnar front or the edge of the semi-solid mush), the liquid is not undercooled:

*
l lC C ; therefore, the first term on the right-hand-side is zero. In the absence of solidification, 

this term is again zero (because 0lg t   ). Therefore, equation (3-16) becomes 

 

   01l s
l m l l

C g
g C C k

t t

 
    

 
v  (3-17) 

 

 

3.3.4 Phase-diagram relations for the three-phase, truncated-Scheil-type and Scheil-type models 
 

In this section, the phase-diagram relations for the three-phase, truncated-Scheil-type and Scheil-

type models are introduced. These relations are first written down for the three-phase model and 

then it is discussed how they should be modified for the truncated-Scheil-type and Scheil-type 

models.  For the three-phase model, under the assumption that the interface between the inter-

dendritic and extra-dendritic liquids is at the equilibrium concentration given by the phase diagram 

*
lC , and the assumption that the inter-dendritic liquid is well-mixed, one has *

d lC C  during 

solidification. In addition, during the eutectic reaction, the temperature is equal to the eutectic 

temperature eutT  and there is no solute rejection: the partition coefficient is equal to unity: 

 

  *

0

Primary solidification : and 0

Eutectic solidification : and 0 and 1

f
liq e d l

l

d eut l eut

T T
T T C > C C

m

C C g T T k




   

    

 (3-18) 

 

where  liq d f l dT C T mC   is the liquidus temperature corresponding to the local inter-dendritic 

liquid concentration dC , and   is a continuous indicator field, known as phase-filed, that 

distinguishes the semi-solid mushy region behind the columnar front (which is a smooth imaginary 

surface that connects the columnar primary tips), which has 0> , from the (undercooled or 

superheated) liquid region ahead of the columnar front, which has 0< . The columnar front itself 

corresponds to iso-contour 0= . 
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To obtain the phase-diagram relations for the truncated-Scheil-type and Scheil-type models, 

equation (3-18) needs to be modified. For the truncated-Scheil-type model, dC  in this equation 

needs to be replaced with lC ; for the Scheil model, in addition to replacing dC  with lC , the 

condition 0>  needs to be removed.  

 

3.3.5 Other constitutive relations for the three-phase model 
 

In this section, the relations to calculate the average envelope surface area per unit volume of the 

REV, envS , and the diffusion length around the envelopes env , appearing in equation (3-10), are 

listed. The relation to calculate envS  reads (3)   

 

 2 3

0 0

3 1
0env e

f

S g

R








 




 (3-19) 

 

where 1 2fR   is the final grain radius and 1  is the primary arm spacing. The diffusion length 

env  is calculated from (3)  

 

2
3 3 2

3 f e

e e

r
PeR r RPe

env e

e f e R R

R e e
dr r dr

R R R r




 
     
 
   (3-20) 

 

where env e lPe w R D  is the growth Péclet number and  1/3
1e f eR R g   is the instantaneous 

sphere radius.  

 

3.3.6 Columnar front tracking for the three-phase and truncated-Scheil-type models 
 

As discussed in the subsections 3.3.4 and 3.3.5, in the three-phase and truncated-Scheil-type 

models (and not in the Scheil-type model), a phase-field   appears in the phase-diagram relations. 
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In addition, in the three-phase model,   appears in the equation for the envelope surface area (i.e., 

equation (3-19)). The phase-field   is calculated using the sharp interface tracking method of Sun 

and Beckermann (51) 

 

   2

2
2

1
env env b

t W

     


    
                   

w w  (3-21) 

 

where envw  is the envelope growth velocity vector  and the parameters b  and W  are numerical 

parameters that control the stability of the method and the thickness of the interface, respectively. 

This parameters need to be chosen following the guidelines discussed in Sun and Beckermann 

(51). To calculate envw , it is assumed that the envelope growth is perpendicular to the local 

isotherms and envw  is therefore calculated from  

 

env env

T
w

T





w  (3-22) 

 

In the three-phase model, the average growth velocity of the envelope is calculated from (3, 10) 

 

   
* *

20 0 14 1l l
env e

σ D m k C
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Γ


     (3-23) 

 

where * 0.02σ  , Γ ,  1Iv , and e  are the tip selection parameter, Gibbs-Thomson 

coefficient, inverse Ivantsov function and the averaged undercooling in the extra-dendritic liquid, 

which is defined as (3) 
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In equation (3-23), the inverse Ivantsov function is calculated from (3) 
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 
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1 0.4567
1

e
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

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 (3-25) 

 

In the truncated-Scheil-type model, the average envelope velocity is calculated from equations 

similar to equations (3-23) to (3-25), except that, instead of the average undercooling in the extra-

dendritic liquid e , average undercooling in liquid l , which is defined as  

 

 
*

*
01

l l
l

l

C C

C k
 
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

 (3-26) 

 

is used. It is emphasized again that the Scheil-type model doesn’t required interface tracking. For 

this model, an “undercooling” can be calculated from equation (3-26), but the values of l  are then 

expected to be zero inside the mush and negative in the superheated liquid.  This is because inside 

the mush one has  *
l lC C  and therefore 0l  . Outside the mush (i.e., for the superheated liquid, 

which has  liq l f l lT T C T mC   ) one has *
l lC C  (note that 0lm  ) and therefore 0l  .  

 

3.4 Solid fraction updating scheme 

 

Note that none of the three-phase, truncated-Scheil-type, or Scheil models have an explicit relation 

for the solid fraction. In other words, there is no relation to calculate the solidification fraction 

directly from. An equation to calculate the solid fraction can be derived by first acknowledging 

that the equalities on the right-hand side of the arrows in equation (3-18) will be satisfied only if 

the “correct” solid fraction is used in calculating the temperature and solute concentration. If, with 

the current value of the solid fraction, this equation is not satisfied then the solid fraction needs to 

be corrected by an amount that can be assumed to be proportional to the imbalance between the 

two sides of the equalities. For the three-phase model, this can be written as  
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where the superscripts n  and n  1  refer to the current and previous iteration levels, respectively. 

Note that at each time step in the numerical simulations updating the solid fraction using this 

equation should be continued until 1n n
s sg g   (within the numerical precision). For the truncated-

Scheil-type and Scheil-type models, dC  in the first equality in equation (3-27) needs replaced with  

lC . Next relations to calculate sg T   during the primary and eutectic solidification need to be 

derived. 

 

To obtain a relation to calculate sg T   during the primary solidification, equation is first 

discretized explicitly as  
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Substituting 1old old
l sg g   and  d f lC T T m   into equation (3-28) gives 
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Both sides of this equation are now differentiated with respect to T , which gives 
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This equation is rearranged to give 
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To obtain a relation to calculate sg T   during the eutectic solidification, equation (3-4) is first 

discretized explicitly as 
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Differentiating both sides of this equation with respect to sg  gives 
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Combining equations (3-31) and (3-34) one gets: 
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An in-house parallel computing code was developed on the OpenFOAM platform. OpenFOAM is 

an open source C++ library for the solution of the continuum mechanics problems (52, 53). The 

details of the numerical implementation of the equations are not discussed here and an interested 

reader should contact the author for more numerical details. 

 

 

 

3.5 Problem statement 
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The problem studied in this chapter is the solidification numerical benchmark problem introduced 

in Bellet et al. (38). A schematic of the problem is shown in Figure 3-1. It consists of solidification 

of lead-18 wt. pct. tin alloy in a rectangular cavity that is insulated from the top and bottom and is 

cooling from the sides through an external cooling fluid with ambient temperature T  and an 

overall heat transfer coefficient Th . The width and height of the cavity are 0.1 and 0.06 cm, 

respectively. Due to the symmetry along the vertical mid-plane, only half of the cavity needs to be 

simulated. Initially, the melt is stationary and its temperature is uniform and equal to the liquidus 

temperature at the initial concentration 18 wt. pct.refC   

 

The thermophysical and phase diagram properties were taken from Bellet et al. (38).  In addition, 

the liquid mass diffusivity lD  and the Gibbs-Thomson coefficient  , which are required in 

simulating the three-phase and truncated Scheil models, are 9 2 17 10lD m s    and 

87.9 10 mK   (54, 55). Finally, the primary arm spacing was calculated using 1 22  (56, 

57).  

 

3.6 Results and discussion 

 

3.6.1 Results in the absence of melt convection  
 

In Figure 3-2, a comparison between the predictions of the Scheil, truncated-Scheil and three-

phase models in the absence of melt convection is shown. The predictions of the Scheil, truncated-

Scheil and full models are shown as back, red, and blue curves, respectively. Plot (a) shows the 

comparison between the solid fraction profiles at t = 60 s, and plot (b) shows the comparison 

between the liquid undercoolings at that time. The vertical dashed lines show the position of the 

columnar front predicted by the different models. For the truncated-Scheil and three-phase models, 

as already discussed, the columnar front corresponds to the isoline 0   and in the Scheil model 

it corresponds to the isoline 0.01sg  . The choice of 0.01 instead of another small value, 0.001 

for example, is arbitrary, but should not distract because it has no influence on the results nor the 

following discussion. From plot (a) it can be seen that the columnar front position and the solid 

fractions predicted by the truncated-Scheil and full models are essentially equal. Behind the 
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columnar fronts, these solid fractions agree very well with the solid fractions predicted by the 

Scheil model. From plot (b) it can be seen that the undercooling predicted by the Scheil model is, 

as expected, zero, while the undercoolings predicted by the truncated-Scheil and three-phase 

models are zero behind the columnar front, have their maximum value (about 0.15) at the columnar 

front and decrease to zero as one moves away from the columnar front towards the liquid.   

 

In Figure 3-3, the solid fractions and liquid undercoolings predicted by the truncated-Scheil model 

(shown in plots (a) and (b), respectively) with different values of the tip selection parameter *  

are compared with the corresponding predictions of the Scheil model. The vertical lines show the 

position of the columnar front. It can be seen from the plots that as *  in the truncated model is 

increased, the length of the undercooled liquid region and the value of undercooling in this region 

decrease; the front position predicted by this model get closer and closer the front position 

predicted by the Scheil model and with * 200  , the front position predicted by the two models 

nearly collapse.  

 

3.6.2 Results in the presence of melt convection 
 

Predictions of the three-phase, truncated-Scheil-type, and Scheil-type models in the presence of 

melt convection are shown in Figure 3-4 to Figure 3-6. Figure 3-4 shows the results at an early 

solidification time (i.e., t = 10 s) and Figure 3-5 and Figure 3-6 show the results at two intermediate 

solidification times (i.e., t = 60 and 120 s, respectively). With all the models, the total solidification 

time was about 550 s. Predictions of the three-phase and truncated-Scheil models are shown for 

* 0.02   and * 200  . The contour plots of the temperature, solid fraction, liquid/extra-

dendritic liquid undercooling, liquid density, and mixture concertation are shown in the first 

through fifth columns, respectively. In the solid fraction contour plots, the vectors and the white 

curves represent the mixture velocity and the columnar front, respectively.  From these plots it can 

be seen that the predictions of the different models and for the different values of *  are overall 

very similar. The only noticeable differences are the predicted flow pattern in the bulk liquid ahead 

of the front (see the vectors in contour plots of the second column) and the predicted depth and 

number of channel segregates. When undercooling is not taken into account (i.e., the Scheil-type 
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model and the three-phase and truncated-Scheil-type models with * 200  ) the melt flow is 

strongest inside the mush. When the undercooling is taken into account, however, there is no 

significant melt flow inside the mush (except in the channels region) and the melt flow is mainly 

in the bulk liquid ahead of the front. The reason for the difference in the flow pattern is discussed 

next.  

 

The main reason for the difference in the flow patterns in the absence and presence of tip 

undercooling is the difference in the magnitude of the solid fractions behind the columnar front. 

From the plots it can be seen that when undercooling is not taken into account (i.e., the Scheil 

model and the three-phase and truncated-Scheil-type models with * 200  ) , the solid fractions 

immediately behind the front are, as expected (see the results in the absence of melt convection 

show in Figure 3-2), relatively low (less than 0.05), while when the undercooling is taken into 

account, they have intermediate values (about 0.3). Low solid fractions behind the columnar front 

permit relatively strong local melt flow. This strong flow requires feeding by the flow in the bulk 

melt. Because the flow inside the mush is upwards, the feeding melt flow needs to be downwards 

counter-clock wise. When the solid fraction behind the columnar front is high, the flow inside the 

mush will be much weaker and, therefore, will not require significant feeding from the bulk melt. 

Therefore, the direction of flow in the bulk liquid ahead of the front is determined by the downward 

thermal buoyancy forces.  

 

From the solid fraction contour plots shown in figures (4-6) it can also be seen that at t = 60 s few 

channel segregates have fully established.  Channel segregates have been the subject of extensive 

studies in the past (15). They are initiated by convective instabilities in the high liquid fraction 

regions of the semi-solid mush. Most of the metallic alloys, including the lead-tin alloy considered 

in this chapter, have a partition coefficient less than unity; therefore, during their solidification, the 

solute will be rejected into the melt. The solute rejection changes the density of the melt and 

induces buoyancy forces. To understand how channels form, imagine a parcel of highly segregated 

liquid located deep in the mush. Two type of forces act on the parcel: buoyancy forces and 

frictional forces. Under certain conditions, the buoyancy forces will be strong enough to overcome 

the frictional retarding forces (excreted to the parcel by the semi-solid mush) and move the parcel 

towards upper regions of the mush (near the primary columnar dendrite tips). The parcel will retain 
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its composition as it flows to the upper regions of the mush (since the mass diffusivity of the parcel 

is much lower than its heat diffusivity) where the temperature is higher. In these regions, this still 

highly-segregated, displaced parcel will delay solidification (or even locally re-melt the solid) 

which will increase the local permeability of the mush. The local increase in the permeability 

allows the subsequent parcels to flow more easily. This, in turn, delays solidification (or enhances 

re-melting) even further until open channels form that are completely free of solid. 

 

In Figure 3-7, the final macrosegregation patterns (i.e., the final distribution of the mixture 

concentration C , which is equal to s s d d e eg C g C g C   in the three-phase model and s s l lg C g C

in the truncated-Scheil-type and Scheil-type models) predicted by the three models are shown. 

Again, results for the three-phase and truncated-Scheil-type models are shown for two different 

values of * 0.02   and 200. From the plots it can be seen that accounting for undercooling does 

not change the overall macrosegregation pattern. This pattern consists of a region with negative 

segregation (i.e., 0C C ) at the bottom of the cavity. This is because solute rejected during 

solidification at this part of the cavity is carried away by the local melt convection. This negative 

segregation region forms at the expense of positively segregated regions at the top near the 

symmetry line and in the middle so that the global species balance is maintained.  

 

3.7 Conclusions 

 

A truncated-Scheil-type two-phase model was developed for columnar solidification of binary 

alloys in the presence of melt convection. The model accounts for primary dendrite tip 

undercooling and assumes Scheil-type solidification behind the primary tips. The model was used 

to perform simulations of a numerical solidification benchmark problem. Predictions of the model 

were compared with the predictions of the Scheil-type, which neglects undercooling entirely, and 

a three-phase model, which accounts for undercooling both ahead and behind the columnar 

primary tips. It was shown that predictions of the truncated-Scheil-type model and the three-phase 

models are nearly identical, which indicates that the truncated-Scheil-type model introduced in 

this chapter can be used instead of the significantly more complex three-phase model to account 

for columnar dendrite tip undercooling.  
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It is also found that the dendrite tip selection parameter *  is a key parameter in the truncated 

Scheil-type and three-phase models. With the real value of *  (i.e., * 0.02  ) these models 

account for undercooling; as the value of *  is increased in the simulations the predicted 

undercooling vanishes and the predictions of these models converge to the predictions of the Scheil 

model. It is also found that accounting for undercooling has no significant impact on the predicted 

final overall macrosegregation pattern. It only influences the flow pattern in the bulk liquid ahead 

of the primary tips during solidification and also the depth and number of the predicted channel 

segregates.  
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Figure 3-1. Schematic of the solidification numerical benchmark problem. 
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             (a)                   (b) 

Figure 3-2. Comparison between the predictions of the truncated-Scheil-type, three-phase and 

Scheil models in the absence of melt convection. Profiles of the (a) solid fraction and (b) 

liquid/extra-dendritic liquid undercooling at t = 60 s.   
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        (a)          (b) 

Figure 3-3. Convergence of the predictions of the truncated-Scheil-type model to the Scheil 

model as the liquid undercooling vanishes with increase in the value of the tip selection 

parameter * . The solid fraction (a) and liquid undercooling (b) profiles at t = 60 s.  
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Figure 3-7. Final macrosegregation maps predicted by the Scheil, three-phase, and truncated-

Scheil-type models.  
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Chapter 4: A macroscale model for columnar to equiaxed transition in the 

presence of melt convection 

 

4.1 Abstract 

 

In the field of metal casting, the prediction of the columnar to equiaxed transition (CET) in the 

presence of melt convection is still an important challenge. One of the open questions is the role 

of melt convection on the CET and the effect of the CET on macrosegregation. A three-phase 

Eulerian volume-averaged model for CET in the presence of melt convection is developed. The 

model accounts for columnar dendrite tip undercooling and nucleation of equiaxed grains ahead 

of the columnar tips. The model is used to perform macrosegregation and CET simulations of a 

numerical benchmark problem involving solidification of a lead-18 wt. pct. tin alloy in a side-

cooled cavity. It is found that accounting for undercooling and the nucleation of motionless 

equiaxed grains dese not change the overall macrosegregation pattern. It only changes the 

predicted shape and number of channel segregates.  

 

4.2 Introduction 

 

The transition from the elongated grains in the outer portions of a casting to the more rounded 

grains in the center is termed columnar to equiaxed transition (CET) (15). CET has fascinated 

researchers in the solidification area for more than 50 years (1). Understanding CET is fundamental 

in determining what type of grain structure forms in castings of most metal alloys. Often, a fully 

equiaxed structure is preferred, but the fully columnar structure of many turbine blades are an 

important exception. Realistic modeling and simulation of CET is still very challenging, because 

it requires one to simultaneously take into account numerous physical phenomena at several length 

scales: heat/solute transfer, melt flow, nucleation of equiaxed grains, and growth of columnar and 

equiaxed grains into an undercooled melt (10). 

 

Hunt (16) proposed the first CET mechanism which is now referred to as mechanical-blocking. 

The hypothesis behind this mechanism is that equiaxed grains nucleate and grow in the 
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undercooled liquid region ahead of the columnar front. If the volume fraction of the equiaxed 

grains just ahead of the columnar front becomes greater than 0.49, equiaxed grains will 

mechanically block further advancement of the front; therefore, CET will occur.  Hunt’s criterion 

has been widely used in the literature to predict CET, but the mathematical derivation of the 

criterion is based on empirical equations. Furthermore, it can be expected that the blocking grain 

fraction will be different for different alloy systems. For example, Biscuola and Martorano (17) 

showed that, at least for the Al-Si alloys, using the equiaxed blocking gain fraction of 0.2 will 

result in CET predictions that are in better agreement with experiments.  

 

To overcome the shortcomings of the mechanical blocking criterion, Martorano et al. (3) 

introduced the concept of solutal-blocking. The physical basis of this criterions is as follows: 

equiaxed grains can nucleate and grow in the undercooled region ahead of the columnar front. 

These grains reject solute into the liquid surrounding the grains and enrich it. When the liquid 

ahead of the columnar front is highly enriched the local undercooling becomes zero; and, therefore, 

the columnar gets solutally blocked. To incorporate this concept into the mathematical model, the 

undercooling had to be defined relative to the average local liquid solute concentration, rather than 

the initial liquid concentration, as was done in the study of Hunt (16). As a result of this new 

definition for undercooling, when the liquid concentration reaches the equilibrium concentration 

locally, the local undercooling ahead of the columnar front becomes zero and the columnar front 

stops: CET happens.  

 

Developing macroscale models to predict CET has been the subject of numerous studies in the 

past decade (3, 11, 13, 58). Most of these studies are based on the framework developed in the 

pioneering work of Wang and Beckermann (2, 10, 48, 49). In the framework of Wang and 

Beckermann, a solidifying system is assumed to consist of three phases: a solid phase, an inter-

dendritic liquid phase, and an extra-dendritic liquid phases. The two liquid phases are separated 

by the grain envelope, which is a virtual and smooth surface that connects the primary tips and the 

tips of actively growing secondary arms. A secondary arm is defined as active when it is longer 

than the next active secondary arm closer to the primary tip. Two liquid phases are introduced in 

the model because the solute diffusion is governed by length scales of different orders of 

magnitude: the secondary arm spacing in the inter-dendritic liquid and the distance between grains 
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in the extra-dendritic liquid. This framework has been extensively by other researcher to develop 

solidification models (11-13, 22, 23, 43-45, 59). 

 

Wang and Beckermann used their framework (60) to develop a model for equiaxed solidification 

in the presence of melt convection (2, 48, 49) and a model for CET (50) in the absence of melt 

convection. In this chapter, the framework of Wang and Beckermann (60) is used to develop a 

model for CET in the presence of melt convection.  

 

4.3 Mathematical model 

 

The equations of the CET model introduced in this chapter are similar to the equations of the three-

phase model developed for fully columnar solidification in the previous chapter. The only 

difference is that equations this and that need to be modified as follows to account for nucleation 

of equiaxed grains. This modification is discussed next.  

 

To incorporate equiaxed solidification, in the phase-diagram relation for the three-phase model 

developed in the previous chapter (i.e., equation (3-18)), the term on the left-hand side of the top 

arrow should be replace with  nuc liq d nucT T T C T   , where nucT  is the nucleation temperature 

and nucT  is the nucleation undercooling. So, in the CET model, the phase-diagram relation reads 

 

  *

0

Primary solidification :

Eutectic solidification : and 0 and 1

f
nuc liq d nuc d l

l

d eut l eut

T T
T T T C T C C

m

C C g T T k


      

    

 (4-1) 

 

In addition, the relation to calculate the envelope surface area per unit volume of the REV, envS , in 

the previous chapter (i.e., equation (3-19)) needs to be modified as  

 

 
 2 3

0 0 and

3 1
otherwise

liq e nuc

env e

f

T T C T

S g

R

    
  



 (4-2) 
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where fR  is calculated form (3) 

 

   
1

1 3

2 0 : columnar

3 4 0 and : equiaxed
f

nuc e

R
n T < T C

 

 

 
   

 (4-3) 

 

 

4.4 Problem statement 

 

The problem studied in this chapter is the same as the numerical solidification benchmark problem 

studied in the previous chapter and for conciseness its description is not repeated here.  

 

4.5 Results and discussion 

 

In Figure 4-1, the prediction of the model in the absence of melt convection (the top row) and in 

the presence of melt convection (the bottom row) and at t = 10 s, are shown. First, the results in 

the absence of melt convection are discussed. From the contour plots at the top row, one can see 

the prediction of the model in the absence of melt convection are, as expected, one dimensional. 

In other words, the different quantities vary only in the horizontal direction and the columnar front 

is a vertical line. From these plots one can also see that the solid fraction ahead of the columnar 

front is about 0.05, which indicates that the equiaxed grains have already nucleated ahead of the 

front. However, the solute rejected from these grains was not strong enough to vanish the 

undercooling and the undercooling ahead of the columnar front is still relatively high. Therefore, 

the columnar front is expected to continue moving to the left parts of the cavity towards to middle. 

Next, the results in the presence of melt convection are discussed.  

 

In the presence of melt convection, the main flow pattern in the cavity is a clock-wise rotating 

convection cell. This cell is produced by the downwards flow ahead of the columnar front, which 

is itself, due to the downwards thermal buoyancy forces. This convection cell carries the low 

temperature liquid ahead of the columnar front to the bottom parts of the cavity and, therefore, 

there is more undercooled liquid at the bottom parts of the cavity than at the top. The flow inside 
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the mush, in contrast to the flow ahead of the columnar front, is moving upwards due to the 

upwards solutal buoyancy forces. This upwards flow needs to make a sharp turn left when it 

reaches the top of the cavity and this give the highly localized left moving flow near the top wall 

of the cavity. This flow carries the solute rejected during the solidification inside the mush away 

to the bulk and therefore the liquid ahead of the front at the top right corner of the cavity is highly 

undercooled. Therefore, the equiaxed grains start nucleating there. These equiaxed grains slow 

down the columnar front locally. 

 

In Figure 4-2Figure 4-3, the prediction of the model in the absence of melt convection (the top 

row) and in the presence of melt convection (the bottom row) and at t = 20 s, are shown. The 

distributions of the different quantities at this time are very similar to what was observed at t = 10 

s. The front has moved further to the left. The clock-wise rotating convection cell in front of the 

edge of the mushy zone and the left moving flow near the top of the cavity are both visible at t = 

20 s. More equiaxed grains have nucleated in front of the columnar front at the top right corner of 

the cavity and the undercooling starts to vanish locally. This indicates that CET is expected to 

happen soon at this part of the cavity. Also, formation of channel segregates is clearly visible from 

the solid fraction contours. Also, note that, due to the upwards flow inside the mush, the solid that 

is forming at the bottom right corner of the cavity has concentration lower than the nominal 

concentration 0 18C  wt. pct.  

 

In Figure 4-3, the prediction of the model in the absence of melt convection (the top row) and in 

the presence of melt convection (the bottom row) and at t = 60 s, are shown. From the solid fraction 

contour plots, it can be seen that the channels exist both in the columnar and equiaxed regions of 

the mush. Formation of channels in the equiaxed region is attributed to the fact that the equiaxed 

grains are assumed to be motionless. In other words, it is assumed that these grains are fixed in 

their place after nucleation. The convection cell that was observed in the earlier times is now much 

smaller. The flow inside the mush is now much weaker than the previous times and, as the result 

of that, the left moving flow that was observed close to that top wall of the cavity at the earlier 

times has now fully disappeared; the isothermal inside the mush are nearly vertical and very similar 

to the no flow isotherms. Flow at the upper parts of the cavity in front of the mush does not have 
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a regular pattern and that is probably because the flow there is being influenced by the highly 

unsteady flow that is being rejected from the channels in the mush.  

 

In Figure 4-4 and Figure 4-5, similar predictions but at two late solidification times of t = 120 s 

and t = 240 s, respectively, are shown. From these plots, it can be seen that, at t = 120 s, CET at 

the upper half of the cavity has already happened, while, at the bottom parts of the cavity, the 

columnar front is still moving to the left, due to the significant local undercooling ahead of the 

front. At t = 240 s, the undercooling ahead of the columnar front at the bottom parts of the cavity 

has also vanished and CET has happened everywhere in the cavity.  

 

In Figure 4-6, the final macrosegregation patterns (i.e., the final distribution of the mixture 

concentration s s d d e eC g C g C g C   ) predicted by the model in the absence and presence of 

equiaxed grains (the second and third columns) are compared with the macrosegregation pattern 

predicted by the Scheil-type model  introduced in the previous chapter. From the plots it can be 

seen that the overall macrosegregation are very similar. Similar to the patterns observed in the 

previous chapter, it consists of a region with negative segregation (i.e., 0C C ) at the bottom of 

the cavity. This is because solute rejected during solidification at this part of the cavity is carried 

away by the local melt convection. This negative segregation region forms at the expense of 

positively segregated regions at the top near the symmetry line and in the middle so that the global 

species balance is maintained. It can also be observed that accounting for the nucleation of 

motionless equiaxed grains dese not change the overall macrosegregation pattern.  

 

4.6 Conclusions 

 

A three-phase Eulerian volume-averaged model for CET in the presence of melt convection was 

developed. The model accounts for columnar dendrite tip undercooling and nucleation of equiaxed 

grains ahead of the columnar tips. The model was used to perform macrosegregation and CET 

simulations of a numerical benchmark problem involving solidification of a lead-18 wt. pct. tin 

alloy in a side-cooled cavity. It was found that accounting for the nucleation of motionless 

equiaxed grains dese not change the overall macrosegregation pattern.  
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Figure 4-1. Snapshots at t = 10 s of the different quantities and the position of the columnar 

front, which corresponds to isoline ϕ = 0. In the second and third columns, the vectors represent 

the mixture velocity. 
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Figure 4-2. Snapshots at t = 20 s of the different quantities and the position of the columnar 

front, which corresponds to isoline ϕ = 0. In the second and third columns, the vectors represent 

the mixture velocity. 
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Figure 4-3. Snapshots at t = 60 s of the different quantities and the position of the columnar 

front, which corresponds to isoline ϕ = 0. In the second and third columns, the vectors represent 

the mixture velocity. 
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Figure 4-4. Snapshots at t = 120 s of the different quantities and the position of the columnar 

front, which corresponds to isoline ϕ = 0. In the second and third columns, the vectors represent 

the mixture velocity. 



www.manaraa.com

49 
 

 

Figure 4-5. Snapshots at t = 240 s of the different quantities and the position of the columnar 

front, which corresponds to isoline ϕ = 0. In the second and third columns, the vectors represent 

the mixture velocity. 
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Figure 4-6. final macrosegregation map predicted in the absence and presence of undercooling 

and for fully columnar and mixed columnar and equiaxed. 
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Chapter 5: Upscaling mesoscopic simulation results to develop constitutive 

relations for macroscopic modeling of equiaxed dendritic solidification 

 

 

5.1 Abstract 

 

Macroscale solidification models incorporate the microscale and mesoscale phenomena using 

constitutive relations. These relations can be obtained by simulating those phenomena inside a 

Representative Elementary Volume (REV) and then upscaling the results to the macroscale. In the 

present study, a previously developed mesoscopic envelope model was used to perform three-

dimensional simulations of equiaxed growth at a spatial scale that corresponds to a REV. The 

mesoscopic results were upscaled by averaging them over the mesoscopic simulation domain. The 

upscaled results were used to develop new constitutive relations, which, unlike the currently 

available relations, do not rely on highly simplified assumptions about the grain envelope shape 

or the solute diffusion conditions around it. The relations are verified by comparing the predictions 

of the macroscopic model with the upscaled mesoscopic results at different solidification 

conditions. These relations can now be used in macroscopic models of equiaxed solidification to 

incorporate more realistically the microscale and mesoscale phenomena.   

 

5.2 Introduction 

 

Solidification is a complex multiscale problem that is controlled by phenomena occurring at length 

scales that are distinct from each other and range over roughly five orders of magnitude (61, 62). 

At the macroscale (i.e., the scale of the whole casting) heat transfer and typically melt convection 

take place, grains can move, and the solid might deform. At the mesoscale (i.e., the scale of the 

primary arms spacing ranging from 1 to 0.1 mm) grains grow and determine the final grain 

structure. At the microscale (i.e., the scale of a dendrite tip radius ranging from 10-2 to 10-3 mm) 

the competition between the microscale heat/solute diffusion and surface tension determines the 

dendrite tip radius and velocity. What makes solidification modeling a complex task is that there 

is a strong inter-scale coupling between the phenomena occurring at the different length scales. 
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For example, macroscale melt convection influences the microscale solute diffusion, and is, itself, 

influenced by the microscopic structure of the semi-solid mush. Because of this coupling, 

macroscale models need to incorporate the microscale and mesoscale phenomena. One might, 

however, wonder how this can be achieved because, in macroscale models, a unit cell is always 

much larger than the scale on which the microscale and mesoscale phenomena take place.  

 

Microscale and mesoscale phenomena can be incorporated in the macroscale models using 

volume-averaging methods. Averaging concepts were first applied in the solidification field by 

Beckermann and Viskanta (63) in the mid to late 1980s and later significantly extended by Ni  and 

Beckermann (64) and Wang and Beckermann (2, 10, 48, 49, 60). Volume-averaging is now a 

widely accepted method in developing macroscale solidification models as is indicated by more 

than one thousand citations to the original chapters. Volume-averaged macroscale models have 

been used to simulate solidification in systems as large as steel ingots (65, 66). It is beyond the 

scope of this chapter to review the governing equations in detail, but thorough reviews are available 

(60, 67). In brief, these models are derived by averaging the local equations (i.e., equations that 

are valid at the microscopic scale) for each phase over a small volume that contains all the phases 

present in the system and is called the Representative Elementary Volume (REV). The size of a 

REV corresponds to a unit cell in macroscopic simulations. The resulting volume-averaged 

equations contain phase fractions and source terms. These source terms, which account for the 

microscale and mesoscale transport phenomena occurring at the interfaces between the different 

phases, depend on variables that are not predicted by the macroscopic model, because the lower 

scale information that these variables represent has been lost in the averaging process. Accurate 

calculation of these source terms, therefore, requires one to do a formal analysis on the REV scale 

and then pass up the information to the macroscale, through constitutive relations, in a process 

called upscaling. The term upscaling simply means that in the ladder of length scales information 

is passed up from a smaller scale to a larger scale by averaging. This upscaling has never been 

tried in the field of solidification, mainly because of the complexity that arises as the result of the 

large range of length scales that need to be resolved. In other words, in solidification, there is a 

large gap between the involved micro and macro length scales. Therefore, the currently available 

constitutive relations have been based on simplifying assumptions rather than a formal REV scale 

analysis.  
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The gap between the micro and macro scales can be bridged using the mesoscopic model originally 

developed for pure materials by Steinbach et al. (61, 62), extended for binary alloys by Delaleau 

et al. (68), and further validated by Souhar et al. (69) by performing three-dimensional simulations 

of equiaxed growth and comparing the results with experimental scaling laws (70). Mesoscopic 

models directly resolve the transport phenomena on the REV scale, by solving an equation for the 

heat/solute transport on this scale, and incorporate microscale phenomena, by using a local 

analytical solution for the microscale heat/solute transport. The computational power requirement 

of these models is significantly lower than the models that resolve the microscale phenomena 

directly, such as the phase field models (61, 62). This allows one to do three-dimensional 

simulations at low undercoolings and at relatively large domain sizes that correspond to a REV. 

 

In this chapter, the mesoscopic envelope model of Delaleau et al. (68) was used to perform three-

dimensional simulations of equiaxed growth on a REV scale. Simulations were performed at a 

large range of initial undercoolings and grain densities and the results were upscaled by averaging 

them over the volume of the REV. The upscaled results are examined in detail and used to develop 

constitutive relations for macroscale solidification models. The constitutive relations were verified 

by comparing the predictions of the volume-averaged macroscopic model with the upscaled 

mesoscopic results at different solidification conditions.  

 

The rest of the chapter is organized as follows: The macroscopic model is introduced in section 

5.3. A brief introduction of the mesoscopic model and mesoscopic results are presented in section 

5.4. The constitutive relations are developed in section 5.5 and are verified in section 5.6.  

 

5.3 Volume-averaged macroscopic model 

 

In this section, the conservation equations of the volume-averaged macroscopic model used in the 

present study are first introduced. It is shown that these equations contain variables that need to be 

obtained from constitutive relations. The constitutive relations are discussed next.  

 



www.manaraa.com

54 
 

5.3.1 Conservation equations 
 

Following the pioneering work of Wang and Beckermann (2, 10, 48, 49, 60), to develop a 

macroscopic model for equiaxed solidification in an undercooled melt, a solidifying system is first 

assumed to consist of three phases: solid, inter-dendritic liquid, and extra-dendritic liquid. The two 

liquid phases are separated by the grain envelope, which is a virtual and smooth surface that 

connects the primary tips to the tip of actively growing secondary arms. A secondary arm is defined 

as active when it is longer than the next active secondary arm closer to the primary tip. Figure 1 

shows a schematic of a grain envelope and the regions of the solid, inter-dendritic liquid, and extra-

dendritic liquid phases, denoted by s, d, and e, respectively. Writing the local (i.e., microscopic 

level) equations for continuity and solute balance in the extra-dendritic liquid in the absence of 

melt convection and solid motion, and then averaging them over the volume of the REV results in 

the following volume-averaged equations for the average growth kinetics of and solute diffusion 

rates from the dendrite envelopes, respectively:  

 

env
env env

dg
S w

dt
  (5-1) 

 

   * *e l
e e l env l e

env

g D
g C C S C C

t t 


  
 

 (5-2) 

 

where envg , 1e envg g  , envS , envw , eC , *
lC , lD  and env  are the envelope fraction (i.e., grain 

fraction), extra-dendritic liquid fraction, envelope surface area per unit volume of the REV, 

average envelope growth velocity, average solute concentration in the extra-dendritic liquid, 

equilibrium solute concentration in the liquid, solute mass diffusivity in the liquid, and average 

diffusion length around the envelopes, respectively. Equation (5-1) indicates that the envelope 

volume fraction envg  will increase and growth will continue, as long as envw  is greater than zero. 

On the right-hand-side of equation (5-2), the first and second terms represent the microscopic 

solute transfer (from the inter-dendritic to extra-dendritic) at the d-e interface due to the 

movements of this interface and due to the diffusion at this interface, respectively. Finally, the 

term *
l eC C  is linked to the average undercooling in the extra-dendritic liquid undercooling, 

which is the driving force for growth.  
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In equations (5-1) and (5-2), the variables  envS , envw , and env  need to be obtained from constitutive 

relations. The next section discusses the procedure to derive these relations and also the 

assumptions that have been commonly used in the literature to derive the currently available 

constitutive relations.   

 

5.3.2 Constitutive relations 
 

To obtain the constitutive relations for the envelope variables envS , envw , and env , the envelope is 

first approximated by the volume-equivalent sphere, referred to as sphere hereafter. A schematic 

of the sphere is also shown in Figure 1. Then, the envelope variables are related to the sphere 

variables as follows.  

 

5.3.2.1 Relating envelope variables to sphere variables 

 

The envelope surface area per unit volume of the REV, envS , is related to the sphere surface area 

per unit volume of the REV, spS , directly from the definition of the envelope sphericity   

 

sp
env

S
S




 

(5-3) 

 

One should note that the sphericity   is a purely geometrical variable (i.e., it depends solely on 

the geometry of the envelope). The sphericity of a sphere is equal to unity by definition, and any 

other shape has a sphericity less than unity (for example, the sphericity of an octahedron is 0.85 

(71)).  

 

To relate envw  to the sphere growth velocity spw , one needs to recognize that equation (5-1) holds 

for any shape including a sphere; since the volume of an envelope and its sphere are equal, the 

time derivative of envelope volume fraction and sphere volume fraction will be equal and one can, 

therefore, write env env sp spS w S w . In this relation, envS  can be substituted from equation (3) to give: 
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env spw w
 

(5-4) 

 

Next, the variation of   during growth is discussed. Equiaxed growth starts from a spherical 

nucleus, which has 1  and, from equation (5-4), 1env spw w  . As the spherical nucleus grows 

into the undercooled melt surrounding it, its shape becomes unstable and relatively fast growth 

along the energetically favorable crystallographic directions, compared to growth along the other 

directions, gradually transitions the shape into a dendrite, which has 1 and, again from equation 

(5-4), 1env spw w  . Therefore, during growth,   and env spw w  decrease from their initial value 

of unity.  

 

In the current literature, there are no relations to predict the decrease in   or env spw w  during 

growth. Therefore, macroscopic models had to rely on pre-determined and constant values for   

and env spw w . For example, in the study of Martorano et al. (3),   and env spw w  have been 

assumed to be equal to unity during the entire growth period; in other words, it is assumed that 

grains retain their initial spherical shape. In the studies of Ludwig and Wu (12, 59),   is assumed 

to be equal to 0.85 (i.e., the sphericity of an octahedron) and env spw w  is assumed to be equal to 

unity. Disregarding the decrease in   and env spw w  during growth can be expected to result in 

inaccuracies in the macroscopic models. In fact, Rappaz and Thevez (72), compared the cooling 

curves measured in the experiments with the ones predicted by their solute diffusion model and 

noticed that their model does not predict the recalescence very well. They attributed this partly to 

the fact that in their model, sphericity was assumed to be equal to unity during the entire growth. 

As another example, Wu et al. (11, 13) did columnar to equiaxed (CET) simulations with different 

values for sphericity and found that the CET position is highly sensitive to the sphericity value. 

Developing a relation to predict the decreases in   and, therefore, in env spw w , during growth is 

one of the objectives of this study.  

 

To relate env  to the sphere diffusion length sp , one needs to realize that the envelope diffusion 

length is determined by the diffusion field around the envelope. It is therefore, in general, a 
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complicated function of the envelope shape, size and growth velocity and a relation between env  

and sp  cannot be obtained from a simple and purely geometrical analysis, such as the one we did 

to obtain equation (5-4). Such a relation has never been proposed in the literature mainly because 

the complex nature of solute diffusion field around an envelope precludes one from finding an 

analytical relation for env . Macroscopic models, therefore, have simply assumed env sp  . This 

assumption might have reasonable accuracy during the initial stages of growth, when the envelope 

is spherical; however, as the envelope becomes dendritic with growth, the assumption can be 

expected to become increasingly inaccurate. Developing a relation for env  is another objective of 

this study.  

 

5.3.2.2 Relations for Sphere Variables 

 

In the previous section, the envelope variables were related to the sphere variables. In this section, 

the relations for the sphere variables are outlined first and then interesting limiting cases of the 

relation for sp  are discussed.  

 

The sphere surface area per unit volume of the REV, spS , is calculated from  

 

 
2

3

4 3

4 3
sp env

sp
spsp env

nR g
S

RnR g




   (5-5) 

 

where spR  is the sphere radius. Note that the denominator of the right-hand side of the first equality 

represents the volume of the REV. The sphere radius spR  is calculated from 

 

 

sp
sp

dR
w

dt


 

(5-6) 

 

Next, the model needs a relation for spw . Currently, most of the macroscopic models assume 

sp tw V  (2, 3). However, this assumption simply contradicts the definition of the sphere. This is 
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because a sphere with sp tw V  will have sp tR l  and, therefore, its volume will be higher than the 

envelope volume and not equal to it. Developing a relation for spw  is one of the objectives of the 

present study.  

 

The sphere diffusion length sp  is calculated from the relation developed by Martorano et al. (3) 

 

   

2 2 2 31
2

3 3 2 2

3 1 Iv Iv

f
sp

sp

f
sp

sp

R
Pe

Rsp sp f sp sp sp sp f
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R sp f sp spf
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sp sp f sp sp

R R R R R R R
R e
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
 

    
 

 
    

 

                  
 
       

(5-7) 

 

where sp sp sp lPe w R D  is the sphere growth Péclet number, fR  is the final grain radius, and 

 Iv  is the Ivantsov function. This equation indicates that the diffusion length around a sphere 

depends on the radius and growth velocity of the sphere and the final grain radius. A better insight 

into this dependence can be obtained by simplifying equation (5-7) in two interesting limiting 

cases: the high spPe  limit and the high fR  limit (i.e., the single grain limit). This is discussed 

next.  

 

In the high spPe  limit, 
  1sp f spPe R R

e
     converges to zero and therefore, inside the curly brackets on 

the right-hand-side of the equation, the first three terms and the seventh term can be dropped; the 

fifth term becomes negligible compared to the fourth term; and, finally, in the last term,  Iv spPe  

can be approximated by 1 1 spPe  (73). Therefore, equation (5-7) simplifies to 

 

1sp

sp spR Pe




 

(5-8) 
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Interestingly, equation (5-8) indicates that in in the high spPe  limit, sp  does not depend on fR . 

Using the definition of spPe , equation (5-8) can be recast into 

 

l
sp

sp

D

w
 

 

(5-9) 

 

The second interesting limiting case of equation (5-7) is the high fR  limit. In this limit, similar to 

the high spPe  limit discussed above, 
  1sp f spPe R R

e
     converges to zero. Therefore, inside the curly 

brackets, the first three terms and the seventh term can be dropped; the fourth and fifth terms 

become negligible compared to the sixth term; finally, in the denominator of the term outside the 

curly brackets, 3
spR  becomes negligible compared to 3

fR ; therefore, equation (5-7) reduces to 

 

 1 Ivsp
sp

sp

Pe
R


 

 

(5-10) 

 

Note that the high spPe  limit of this equation is, as expected, identical to the high spPe  limit of 

equation (5-7) (i.e., equation (5-8)). In the low spPe limit, one has  Iv 0spPe  (3) and equation 

(5-10) reduces to  

 

sp spR   (5-11) 

 

5.3.2.3 Primary tip velocity 

 

Macroscopic models need to predict the primary tip velocity tV , referred to as the tip velocity 

hereafter, because the growth of an envelope, at least during the early stages, is mainly driven by 

the growth of its primary arms. Therefore, the tip velocity tV  can be expected to be one of the 

main, if not the main, factor in determining spw . In addition, tV  is required in predicting the 

primary arm length tl  from  
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t
t

dl
V

dt
  (5-12) 

To understand the variations of tV  during the quasi-steady growth of assembly of dendrites, let 

us first consider two dendrites located at the distance 2 fR  from each other inside a uniformly 

undercooled melt, as shown schematically in Figure 2 at (a) an early time and (b) a late time during 

growth. Due to the symmetry, only half of the dendrites are shown. The profiles of solute 

concentration in the extra-dendritic liquid are also shown in the figure. Note that the concentration 

at the tip is equal to the equilibrium concentration *
lC  and, at some distance ahead of the tip, it 

declines to the far field solutal concentration 
fC . 

 

At the early stage of growth, shown in Figure 2(a), there is a distance between the edges of the 

solutal boundary layers ahead of the tips and, therefore, the solutal field ahead of one dendrite is 

not influenced by the presence of the other. In other words, the dendrites are not interacting. This 

stage of growth is, therefore, referred to as the non-interacting stage. At this stage, the growth of 

the dendrites is virtually the same as the growth of a single dendrite into an essentially infinite 

medium. As the dendrites keep growing, the distance between the edges of the boundary layers 

decreases and at some intermediate time the edges meet. Once that happens, the solutal boundary 

layer ahead of each of the dendrites starts to get influenced by the presence of the other dendrite. 

In other words, the dendrites start to interact. This stage is called the interacting stage. Next, the 

variations of eC  and 
fC  during these two stages are discussed. During the non-interacting stage, 

the far field solute concentration 
fC  is constant and equal to the initial solute concentration 

 0eC t  ; furthermore, 
fC  is less than the average solute concentration in the extra-dendritic 

liquid  eC t :    0f e eC C t C t   . During the interacting stage, however, 
fC  is greater than 

 0eC t   but still less than  eC t :    0e f eC t C C t   . These two relations are important, 

and we will refer to them subsequently when we discuss the time variations of tV  during these 

two stages.  

 



www.manaraa.com

61 
 

As the primary arm of a dendrite grows, it rejects solute (assuming 0 1k  ). For growth to continue, 

the rejected solute needs to be dissipated away from the tip towards the bulk liquid. The balance 

between the solute flux rejected at the tip and the solute flux diffusing away from the tip determines 

the tip velocity. The latter flux is proportional to the solute gradient at the tip. During the non-

interacting stage of growth, the diffusion field ahead of the tip and therefore the diffusion flux at 

the tip remain constant. This causes tV  to remain constant. During the interacting stage, however, 

fC  increases with time, which makes the solute profiles progressively smoother; therefore, the 

solute diffusion flux at the tip and consequently tV  both decrease with time. Prediction of tV  

during these stages is discussed next.  

 

In macroscopic models of solidification, the most commonly used relation for predicting tV  is 

the relation proposed by Ivantsov (74): 

 

   1exp Ef t t tPe Pe Pe   (5-13) 

 

where f is the far field undercooling defined as  
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*

*
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l f
f
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


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
 (5-14) 

 

and  2t t t lPe V R D  is the dendrite tip Péclet number,   0t l tR d D V   is the tip radius, 0k  

is the partition coefficient, 0d  is the capillary length,    is the tip selection parameter, and the 

function  1E  is the exponential integral function. Equation (5-13) is the exact similarity solution 

for the solute diffusion field around a paraboloid of revolution during its quasi-steady shape-

preserving growth into an infinite medium with uniform and constant far field undercooling f . 

This equation has been shown to provide accurate predictions of the primary tip velocity tV  during 

the quasi-steady growth of a single dendrite into an essentially infinite medium (75). For the quasi-

steady growth of multiple dendrites, equation (5-13) can be expected to accurately predict tV  



www.manaraa.com

62 
 

during the non-interacting stage. To predict tV  during the interacting stage, modifications to this 

equation have been proposed (76, 77). These modifications are, however, limited to isothermal 

dendrites and specific dendritic arrangements and a generally valid relation to predict tV  during 

the interacting stage is still not available. Therefore, similar to numerous studies in the literature 

(2, 3, 10, 49, 58), in this chapter, equation (5-13) is used to predict tV  during both non-interacting 

and interacting stages.  

 

In using equation (5-13) to predict tV  during growth of multiple dendrites it should be kept in 

mind that, as already discussed in connection with Figure (2), during the entire growth period (i.e., 

interacting and non-interacting stages), one has 
f eC C . Therefore, the far field undercooling 

f  

will always be higher than the average undercooling in the extra-dendritic liquid e , which is 

defined as  

 

 
*

*
01

l e
e

l

C C

k C
 




 (5-15) 

 

In other words, during the entire growth period, e f  . Therefore, if, in equation (5-13), one 

uses e  instead of f , the tip velocity tV will be underpredicted. Using e  in this equation has 

been, however, a common practice in the literature (2, 10, 49) because, currently, there are no 

relations to predict 
f . Developing a relation to predict 

f  is one of the objectives of this study.  

 

5.4 Mesoscopic envelope model  

 

The mesoscopic envelope model used in the present study was originally developed by Delaleau 

(68) and recently used by Souhar et al. (69) to perform three-dimensional simulations of equiaxed 

growth. The reader is referred to these chapters for the details of the model and the complete set 

of equations. In brief, the model approximates the complex dendritic structure with an envelope 

and a solid fraction field inside the envelope. The normal growth velocity at any point on the 

envelope is calculated from the local dendrite tip velocity, obtained from an analytical stagnant 
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film model, and the angle between the growing dendrite arm and the envelope normal. The liquid 

inside the envelope and on the envelope surface is assumed to be well-mixed and in equilibrium 

with the solid while the liquid outside the envelope is generally undercooled. The solid fraction 

field inside the envelope and the solute concentration field in the extra-dendritic liquid outside the 

envelope eC  are obtained from the numerical solution of a solute conservation equation that is 

valid both inside and outside the envelope. Hence, the solutal interactions between the growing 

grains are fully resolved. 

 

5.4.1 Mesoscopic simulations 
 

The first set of mesoscopic simulations were performed for the isothermal growth of a single grain 

growing into an essentially infinite domain (Figure 3a) and for multiple grains (Figure 3b) with 

high/low grain densities of  0f l IvR D V    = 4.03/6.31, where  0IvV   is the Ivantsov tip 

velocity (i.e., the velocity predicted by equation (5-13)) corresponding to the initial undercooling 

0 . Each case was simulated for 0   0.05 and 0.15. For the multiple grain cases, the grains were 

arranged periodically in a BCC lattice, with the primary arms growing along the axes (Figure 3b). 

 

In figure (4), an example of the mesoscopic simulation results is shown. The figure, which is for 

the multiple grain case with the low undercooling (    ) and high grain density (

 0 4.03f l IvR D V     ), shows the solid fraction sg  and the solute concentration in the extra-

dendritic liquid eC , plotted in the interior and exterior of the envelopes, respectively, at different 

times. It can be seen that (see plot 4(a)), as expected (see the discussion below equation (5-4)), the 

envelope is initially spherical, but it gradually becomes dendritic during the growth. It can also be 

seen that during the growth, the envelopes reject solute to the extra-dendritic liquid and, therefore, 

eC  increases. At the early times (i.e., 0.37  ), this increase is limited to a relatively small 

distance ahead of the envelopes; therefore, eC  further away from the envelopes is still its initial 

value (i.e., 0.5 wt. pct.). At the later times (i.e., 2.23  ), eC  everywhere in the domain has 

become greater than the initial value. Finally, at 5.94  , eC  everywhere has reached the 
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equilibrium solute concentration * 0.523lC  ; the undercooling has fully vanished and the growth 

has ended.  

 

 

 

 

5.4.2 Upscaling mesoscopic results 
 

To upscale the mesoscopic simulations results, they were averaged over the volume of the REV. 

For example, at any time during growth, the solute concentration field in the extra-dendritic liquid 

was averaged over the volume of the REV to give the value of eC  at that time. In Figure 4, the 

upscaled mesoscopic results are plotted as a function of the non-dimensional time defined as 

 2
0Iv ltV D  . Results for a single grain are shown as black curves and for multiple grains with 

high and low grain density as red and blue curves, respectively. Results for     and 0.15 are 

plotted as solid and dashed curves, respectively. 

 

Plot 5(a) shows the envelope volume fraction envg . Squares in the plot represent the start of the 

second stage of growth and the definitions of the first and second stages will become clear 

subsequently, when plot 5(g) is discussed.  Plot 5(b) shows the non-dimensional average 

undercooling in the extra-dendritic liquid 0e  , where e  was calculated from equation (5-15). 

Plot 5(c) and plot 5(d), a close-up of 5(c) around 5  , show the sphericity, which was calculated 

using equation (5-3) after calculating envS  and spS  as follows: envS  was measured directly from the 

simulated envelope shape, and spS  was calculated from equation (5-5), after computing spR  from 

an equation that is derived subsequently in connection with plot 5(h). Plot 5(e) shows the non-

dimensional primary arm length  0t l Ivl D V    , where tl  was measured directly from the 

simulated envelope shape. Plot 4(f) shows the non-dimensional tip velocity  0t IvV V  , where tV   

was back-calculated from equation (5-12). Plot 5(g) shows the scaled primary arm length *
tl  

defined as 
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* t
t

diff

l
l

l
  (5-16) 

 

where diffl  is the instantaneous diffusion length ahead of the primary tip, which is defined as 

 

l
diff

t

D
l

V
  (5-17) 

 

Plot 5(h) shows the non-dimensional sphere radius  0sp l IvR D V    . The sphere radius spR  was 

calculated from an integrated form of equation (5-1) which gives an explicit relation for spR  as a 

function of envg . This integrated form is derived as follows: first, the right-hand side of equation 

(5-1) was substituted by sp spS w  (see the discussion above equation (5-4)); then, spS  and spw  were 

substituted from equations (5-5) and  (5-6), respectively, to give  

 

spenv

env sp

dRdg
dt

g dt R dt


1 3
 (5-18) 

 

Next, the definite integrals of both sides of this equation were taken from time zero to time t to 

give 

 

   
spenv

env sp

Rg

g t R t

 
  

   

3

0 0
 (5-19) 

 

In this equation,  envg t  0  and  spR t  0  are the envelope fraction and sphere radius 

corresponding to the initial spherical seeds. Since the initial seeds have the same size,  envg t  0  

and  spR t  0  can be related as      1 3 1 30 2 3 4 0sp f envR t n R g t     , where n  is the 

effective number of grains inside the REV, which is equal to unity for a single grain and two for 

multiple grains in the BCC arrangement. Substituting this equation into equation (5-19) gives  
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1 3
1 33

2
4sp f envR R g

n
   
 

 (5-20) 

 

Note that this equation has a simple physical meaning: it indicates that, as expected, at any time 

during growth, the total volume of the spheres (i.e., 34 3spn R ) is equal to the total volume of 

the envelopes (i.e., 38 f envR g ). In fact, one can write this equation directly from the definition of 

the sphere. Here, however, this equation was derived using a more formal procedure to show that 

it is indeed the integrated form of equation (5-1).  

 

Plot 5(i) shows the non-dimensional sphere velocity  0sp Ivw V  , where spw  was calculated from 

equation (5-6). Plot 5(j) shows the non-dimensional average diffusion length around the envelopes 

 0env l IvD V    , where env  was back-calculated from equation (5-2) by solving this equation 

for env , using the mesoscopic values for all the other quantities. Finally, plot 5(k) shows the 

comparison between the mesoscopic primary tip velocities and the Ivantsov tip velocities 

corresponding to e . Next, the important observations that can be made from these plots are 

discussed.  

 

From plots 5(a) and 5(b) it can be seen that for a single grain envg  and e  remain close to zero and 

0 , respectively, during the entire growth. This is because for the single grain cases the size of 

the simulation domain was chosen to be large enough to remain much larger than the envelope 

size during the entire growth. For the multigrain cases, however, the envelope fraction increase 

relatively fast initially because e , which is the driving force for growth, is relatively high; as 

e  decreases, due to the solute rejection from the envelopes to the extra-dendritic liquid, the rate 

of increase in envg  decreases. Finally, when the undercooling is fully consumed (at   about 4 and 

9 for the high and low grain density cases, respectively) envg  ceases to increase further and growth 

ends.  
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From plots 5(c) and 5(d) it can be seen that, as expected, the initial value of   is equal to unity 

and as the envelope becomes progressively more dendritic with growth,   decreases. For a single 

grain, this decrease continues until 40  . At this time, we stopped the simulations because the 

diffusion field around the envelope started to interact with the boundaries of the simulation 

domain. For the multigrain cases, however, after a relatively small initial decrease (of about 0.1 

for the high grain density cases and 0.2 for the low grain density cases)   stops to decrease further 

and then remains constant.  

From plot 5(f) it can be seen that at an early stage of growth (   less than two) we have 

 01 t IvV V  : the mesoscopic tip velocities tV  are greater than the Ivantsov tip velocities 

corresponding to the initial undercooling  0IvV  . This is because of the presence of an initial 

transient stage in the mesoscopic simulations, where the eC  field is transitioning from the initial 

value of 0eC C  (see plot 4(a)) to the quasi-steady values. During this stage, the solutal gradient 

ahead of the tip and therefore the tip velocity is greater than the quasi-steady values predicted by 

equation (5-13).  

 

At the end of the initial transient stage (  about 2), the quasi-steady stage starts. During this stage, 

tV for a single grain (i.e. the black curves) remains, as expected, constant, but at a value that is 

slightly (about 10 percent) lower than the Ivantsov tip velocity corresponding to the initial 

undercooling 0 . This minor underprediction of the tip velocities by the mesoscopic model is of 

no significant consequence and should not distract; however, for the sake of completeness, the 

reason for it is explained next. As already discussed in detail by Steinbach et al. (61, 62) and 

Souhar et al.  (69, 78), in the mesoscopic model, the predicted tip velocities depend on a parameter 

in the model known as the stagnant film thickness f . For the high values of f  (i.e. 3f diffl 

(69, 78)) the mesoscopic tip velocity for a single grain will be equal to the Ivantsov tip velocity. 

However, with such a high value of f , the predicted grain envelope shapes will be unrealistic 

(compared to the experimentally observed ones (70)). Therefore, to have relatively accurate 

predictions for both tV  and the envelope shape, a compromising intermediate value for f  needs 

to be chosen. As a result of this compromise, the quasi-steady mesoscopic tip velocities are slightly 

lower than the Ivantsov tip velocities.  
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The tip velocity tV  for the multiple grain cases starts to rapidly decrease at some intermediate 

time (about   = 2 for the high grain density cases and 4.5 for the low grain density cases). This 

rapid decrease is physically important and indicates that the tips are solutally interacting.  

 

From plot 5(g) it can be seen that *
tl , which was defined in equation (5-16), for single grain cases 

increases with time during the entire growth period. For the multigrain cases, however, *
tl  

increases with time initially, but, at some intermediate time which is denoted by the squares in the 

plot, *
tl  starts to decrease with time and eventually reaches zero (since diffl    as the result of  

0tV  ). Therefore, the entire growth period can be divided into two stages: the first stage, where 

* 0tdl dt  , and the second stage, where * 0tdl dt  . Diving the entire growth period into two 

stages based on the sign of *
tdl  is an important premise that is proposed in this study and will be 

used in section 5.5, where the constitutive relations are developed.  

 

Variations of *
tl  during these two stages can be understood by following the variations of tl  and 

tV , shown in plots 5(d) and 5(e), respectively, and focusing on how the nominator and denominator 

of equation (5-16) change with time. During the first stage, tV  is relatively high (i.e., greater than 

 00.8 IvV  ) and therefore, tl , which appears in the nominator of equation (5-16), increases 

relatively fast; this causes *
tl  to increase with time during the first stage. When the second stage 

starts, tV  has an intermediate value and, more importantly, is decreasing fast. Therefore, unlike 

the first stage, the increase in tl  is not fast anymore and becomes insignificant compared to the 

fast increase in 
diffl , which appears in the denominator of equation (5-16); this causes, *

tl  starts to 

decrease with time during the second stage.  

 

There is one last interesting point about plot 5(c) that can be discussed now because the first and 

second stages of growth were defined. In this plot, sphericity for the multiple grain cases becomes 

constant at about the same time that the second stage of growth starts. This is an important 
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observation and has inspired the postulate that is the basis of the constitutive relation for the 

sphericity. This postulate will be introduced in section 5.5.1.  

 

Plot 5(i) shows the time variations of the non-dimensional sphere velocity. From the plot, it can 

be seen that during the first stage of growth (i.e., the left-hand side of the squares), the multigrain 

curves collapse on the single grain curves. This indicates that during the first stage of growth,  spw  

for multigrain and single grain cases can be expected to be predicted by the same relation. When 

the second stage starts, however, the multigrain curves cease to collapse on the single grain curves, 

and they start decreasing relatively rapidly. This indicates that spw  during the second stage of 

growth needs to be predicted from a separate relation.  

 

Comparing the time variations of tV , shown in plots 5(f),  and time variations of spw , shown in 

plot 5(i), reveals another interesting observation. Focusing first on the low grain density cases (the 

blue curves), one can see that at 8  , tV  is zero: the primary tips have fully stopped. At the same 

time, however, spw  is still greater than zero: the envelopes are still growing. This indicates that 

growth continues (at least until 10  ) even after the primary tips stop. A similar trend is observed 

for the low grain density curves. Growth of an envelope after the primary tips stop is due to the 

growth of the secondary arms.  

 

In plot 5(k), the mesoscopic primary tip velocities (the thin curves) are compared with the Ivantsov 

tip velocities, predicted using equation (5-13) with f e    (the thick curves). Data are shown 

only for the multigrain cases. One can see from the plot that, as expected (see the discussion below 

equation (5-15)), setting f e   in the Ivantsov solution significantly underpredicts the tip 

velocities.  

 

Finally, this section is ended by summarizing the important observations that can be made from 

the upscaled mesoscopic results: 1) for the multiple grain cases, the entire growth period can be 

divided into the first stage and the second stage and these two stages correspond to the positive 

and negative values of *
tdl , respectively; 2) for the single grain cases, the growth takes place 
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entirely in the first stage; 3) during the second stage, the sphericity remains nearly constant; 4) 

setting f e   in t 

he Ivantsov relation will significantly underpredict the tip velocities.  

  

5.5 Constitutive eelations  

 

5.5.1 Postulates 
 

It is postulated that during the first stage of growth,   is a function of t spl R  only and (inspired 

by what was observed in plot 5(c)) during the second stage of growth,   is constant:  

 

*

*

0

0 0

t
t

sp

t

l
dl

R

dl d

 



 
     

 
    

(5-21) 

 

During the first stage, spw  is assumed to scale with tV  and the ratio sp tw V  is postulated to be a 

function of t spl R  only; during the second stage, spw  is assumed to scale with  sp sw t , where st  

is the time at the start of the second stage, and the ratio  sp sp sw w t  is postulated to be a function 

of the scaled Ivantsov velocity corresponding to e ,    Iv e Iv e sV V t    , only:  
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      

(5-22) 

 

 

Through the entire growth period, f  is assumed to scale with e , and the ratio 
f e   is 

assumed to be a function of the scaled length of the free liquid region ahead of the primary tip up 

to the symmetry line between two adjacent grains * * *
l f tl R l  , where *

f f diffR R l : 
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 *f f
l

e e

l
 
 


 

(5-23) 

 

The envelope diffusion length env  is assumed to scale with the sphere diffusion length 
sp , and 

the ratio 
env sp   is assumed to be a function of sphericity only: 

 

 env env

sp sp

  
 


 

(5-24) 

 

5.5.2 Fitting functions 
 

In this section, the upscale mesoscopic results, presented in section 5.4.2, are used to plot the left-

hand-side of equations (5-21) to (5-24) as a function of the independent variable on the right-hand-

side. The constitutive relations are then developed by curve fitting these plots. In the following 

figures, mesoscopic results for a single grain are shown as black curves and for multiple grains 

with high and low grain density as red and blue curves, respectively. Results for     and 

0.15 are plotted as solid and dashed curves, respectively; the green curves depict our curve fits and 

the squares show the start of the second stage of growth.  

 

In figure 6, the sphericity   is plotted as a function of the ratio of the primary dendrite arm length 

to the sphere radius t spl R . It can be seen that for a single grain, the mesoscopic simulation results 

for the two different initial undercoolings 0  collapse onto a single curve. This indicates that the 

sphericity is indeed a function of  t spl R  only. The multigrain data in the plot fall on the same 

curve as the single grain data during the first stage of growth. However, when the second stage 

starts, the multigrain data start to deviate slightly from the sphericity curve for a single grain. The 

variation of   during this stage are, however, extremely small and are disregarded. The final fit 

of the sphericity data for both the single grain and the multigrain cases is then given by: 
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 (5-25) 

 

Note that in implementing the first equality in this equation, a tiny number (10-10) needs to be 

added inside the parentheses in the denominator to avoid division by zero. This equality can be 

understood as follows. Initially (i.e., 0  ), the envelope is spherical and t spl R  is equal to unity; 

therefore the denominator on the right-hand side will be large, which will make the sphericity 

become equal to unity. During growth, as the envelope shape transitions from a spherical to a 

dendritic, t spl R  increases; the second term on the right-hand-side increases, and therefore   

decreases.   

 

In figure 6(a), sp tw V  during the first stage of growth is plotted as a function of t spl R . It can be 

seen that sp tw V  decreases monotonically as t spl R  increases. Since the single grain and 

multigrain data for the two different initial undercoolings 0  collapse, sp tw V  during the first 

stage of growth is indeed a function of t spl R  only, and can be fit by 

  0.85

0.80 0.78 1 1sp t t spw V l R     . In figure 6(b),  sp sp sw w t  is plotted as a function of 

   Iv e Iv e sV V t    . Single grain data cannot be included in this plot because, as discussed in 

connection with plot 5(g), for a single grain growth takes place solely at the first stage. One can 

see that the multigrain data for the two different initial undercoolings 0  collapse onto a single 

curve. This indicates that  sp sp sw w    is indeed a function of     Iv e Iv e sV V      only. The final 

fit for  sp sp sw w   is then given by       0.50

sp sp s Iv e Iv e sw w t V V t     . Summarizing the fits 

proposed in plots 6(a) and 6(b), we get 

 



www.manaraa.com

73 
 

 
 
 

0.85

*

0.50

*

1
0 0.80 0.78 1

0

sp
t

t t sp

sp Iv e
t

sp s Iv e s

w
dl

V l R

w V
dl

w t V t




 
      

 

      
      

(5-26) 

 

In Figure 8, f e   is plotted as a function of *
ll ; f  was calculated from equation (5-10) using 

the mesoscopic values for tV . Data is shown only during the first stage of growth because, as will 

become clear at the end of this section, in the macroscopic model, calculation of tV  and therefore 

f  are required during the first stage only. Variations of f e   with *
ll  can be best understood 

by first focusing on the data for the high undercooling low grain density case (i.e., the dashed blue 

curve). Initially (i.e., at 0  ), *
ll  has its highest value (about six) and f  is slightly greater than 

e , which is equal to 0 ; this is because, as shown in plot 5(f) and due to the presence of the 

initial transient stage, tV  is initially greater than  0IvV  . During growth, tl  increases and 

therefore *
ll  decreases. For * 2ll  , f e   remains almost constant because the rate of decrease 

in f  and e  are almost the same; however, at *
ll  about three, f e   starts to increase because 

the rate of decrease in e  starts to become greater than the rate of decrease in f . The curves for 

the other mesoscopic cases behave in a similar fashion and all the curves can be fit by a single 

curve given by 
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(5-27) 

 

Note that the first term in the denominator of the right-hand-side is chosen to be slightly less than 

unity so that for a single grain and at the early stages of multigrain growth, where the second term 

in the denominator is almost zero because *
ll  is high, f  becomes slightly higher than e  (

1.031f e  ). Therefore, initially (i.e., at 0  ), the predicted tip velocity tV  will be higher than 

 0IvV  . This means that the macroscopic model can predict the initial transient effects on the tip 
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velocity. However, since the Ivantsov solution (i.e., equation (5-13)) does not incorporate these 

effects, the tip velocities predicted by the macroscopic model during the initial transient stage can 

only be expected to be approximate.   

 

In Figure 9, env sp   for the single grain cases is plotted as a function of  . It can be seen that as 

  decreases during growth, env sp   increases monotonically above unity. This indicates that the 

diffusion length around a complex shaped dendritic envelope is greater than the diffusion length 

for the sphere. Since the data for the two different initial undercoolings collapse, env sp   is indeed 

a function of   only. A curve fit to the data for the single grain is given by: 

 

 2.5
1 1.3 1env

sp

 


    (5-28) 

 

In summary, the macroscopic model consists of equations (5-1) to (5-7), (5-12) to (5-17), and 

(5-25) to (5-28). It requires two inputs: the initial undercooling 0  and the final grain radius fR

. Also, note that tl   and tV  appear only in the first relation of equations (5-25) and (5-26), 

respectively. Therefore, the model needs to calculate tV  during the first stage only.  

 

5.6 Comparing macroscopic and mesoscopic results 

 

In this section, the constitutive relations are verified by comparing the predictions of the 

macroscopic model against the upscaled mesoscopic results. The comparisons are first made for 

the isothermal mesoscopic cases, presented in section 5.4.2, and used in section 5.5 to develop the 

constitutive relations. Next, to provide further confidence in the constitutive relations, comparisons 

are made against new upscaled mesoscopic results. 

 

5.6.1 Isothermal cases 
 

Figures 10 through 13 show the comparisons between the predictions of the macroscopic model 

for different quantities (the blue curves) with the corresponding upscaled mesoscopic results (the 
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red curves) for the four isothermal cases. Figures 10 and 11 show the comparisons for the low 

grain density cases with the low and high undercoolings, respectively and figures 12 and 13 show 

the similar comparisons for the high grain density cases. For all the four cases, the overall 

agreements between the macroscopic predictions and the upscaled mesoscopic results are good 

and, as we discuss next, cannot realistically be expected to be much better. The minor difference 

between the two can be attributed to the difference between mesoscopic and macroscopic values 

of the tip velocities tV  during the initial transient stage.  

 

In plots 10(e) to 13(e) the tip velocities predicted by the macroscopic model are compared with 

the mesoscopic tip velocities. Note that, as discussed at the end of section 5.5, in the macroscopic 

model the tip velocities need to be predicted only during the first stage. Plotting the tip velocities 

during the second stage here is only for the sake of completeness. It can be seen that, during the 

entire growth period, the predicted tip velocities agree reasonably well with the mesoscopic tip 

velocities. Contrasting this agreement with the vast difference that was observed in plot 5(k) 

between the mesoscopic tip velocities and the Ivantsov velocities corresponding to e , one can 

easily acknowledge that the tip velocities predicted by our model (i.e., the  Ivantsov velocities 

corresponding to f ) are, as expected, significantly more accurate (when compared against the 

mesoscopic tip velocities) than the Ivantsov velocities corresponding to e .  

 

The minor difference between the macroscopic and mesoscopic tip velocities is attributed to the 

presence of the initial transient stage in the mesoscopic simulations. Recall that the Ivantsov 

solution (i.e. equation (5-13)) does not incorporate the initial transient effects and a similar relation 

that incorporates these effects does not exist in the literature. Therefore, the agreement between 

the macroscopic and mesoscopic tip velocities cannot realistically be expected to be much better.  

 

5.6.2 Recalescence cases 
 

To further verify the constitutive relations, new mesoscopic simulations were performed and the 

predictions of the macroscopic model were compared with the upscaled mesoscopic results. These 

new cases are inspired by the experiments of Rappaz and Thevoz (72), which involve solidification 

of Al-7 wt. pct. Si in a small unit cell, with uniform temperature, under external cooling. These 
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cases are called the recalescence cases because, as is shown below, a temperature recalescence 

was observed in the cooling curves. To simulate these cases with the macroscopic model, this 

model needs to be supplemented by three additional equations that are discussed next.   

 

The equation for the energy conservation reads 

 

s
p f

gT
c L q

t t


 

 
  (5-29) 

 

where pc , fL , and q  are the specific heat capacity, latent heat, and heat extraction rate, 

respectively. To predict the solid fractions, the solute concentration in the inter-dendritic liquid 

(i.e., the liquid inside the envelopes) was first calculated from (79): 

 

    01d s
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 (5-30) 

 

where 1l sg g   is the liquid fraction. Then, since the inter-dendritic liquid is not undercooled, 

the solid fraction can be calculated by equating the inter-dendritic liquid solute concentration with 

the equilibrium solute concentration *
lC : 

 

  *For :liq e nuc d lT T C T C C    (5-31) 

 

where nucT  is the nucleation undercooling and *
lC  is calculated from the liquidus line of the phase 

diagram 

 

* f
l

l

T T
C

m


  (5-32) 

 

where lm  is the slope of the liquidus line and fT  is the melting point of the pure material. Note 

that equation (5-31) assumes that nucleation occurs instantaneously at the nucleation temperature.   
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Similar to the isothermal cases, the recalescence cases correspond to the growth of multiple grains, 

in a BCC arrangement, with low/intermediate/high grain densities (i.e., fR 0.8/1.6/2.4 mm). In 

the simulations, the properties were taken from Rappaz and Thevoz (72); the initial temperature 

was set equal to the liquidus temperature (i.e., no initial undercooling), and the nucleation 

undercooling was set to zero.  

 

Figures (14) through (17) show the comparisons between the macroscopic predictions of the 

different quantities (the blue curves) with the corresponding upscaled mesoscopic results (the red 

curves) for the recalescence cases with low/intermediate/high grain densities. From the plots it can 

be seen that the overall agreement between the two is good. For example, the recalescence 

observed in the mesoscopic simulations is predicted to within better than 0.5 K accuracy and the 

mesoscopic and macroscopic solid fractions are in an almost excellent agreement. Note that the 

existence of a minor difference between the macroscopic and mesoscopic temperatures while the 

solid fractions are in excellent agreement, shows extremely high sensitivity of the system. 

Predicting temperatures with accuracy of 0.5 K for such a sensitive system is a remarkable 

achievement of the new constitutive relations.  

 

Finally, it is useful to mention that, for the recalescence cases, the macroscopic and mesoscopic 

values of tV  are initially in an excellent agreement. This is because these cases do not have an 

initial transient stage as they start with undercooling zero. This also further supports the argument 

that we had at the end of section 5.6.1, where we attributed the minor difference between 

macroscopic and mesoscopic values of tV  to the presence of an initial transient stage.  

 

5.7 Conclusions 

 

A previously developed mesoscopic envelope model was used to perform three-dimensional 

simulations of equiaxed dendritic growth on a spatial scale that corresponds to a REV, which is 

used in developing volume-averaged macroscopic models. The first set of mesoscopic simulations 

were performed for isothermal growth at a large range of initial undercoolings and grain densities 

(including a single grain). The results were upscaled by averaging them over the REV. The 

upscaled results were examined in detail. It was found that the entire growth period can be divided 
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into two stages based on the sign of the time derivative of the scaled primary arm length. During 

the first stage, the envelope growth is mainly due to the growth of the primary arms, while during 

the second stage it is mainly due to the growth of the secondary arms. In addition, during the 

second stage, the sphericity remains nearly constant. It was also found that using the average 

undercooling in the extra-dendritic liquid in the Ivantsov solution significantly underpredicts the 

tip velocities.   

 

For the first time in the field of solidification, the upscaled mesoscopic results were used to develop 

constitutive relations for macroscopic models of equiaxed solidification. Relations were proposed 

for the envelope sphericity, average growth velocity, far-field undercooling that needs to be used 

in the Ivantsov solution to accurately predict the primary tip velocities, and for the average 

diffusion length around the envelopes.  

 

The constitutive relations were verified by comparing the predictions of the macroscopic model 

with the upscaled mesoscopic results for the isothermal cases and also for the new mesoscopic 

cases. These new cases involve external cooling and a recalescence in the cooling curves. For all 

the cases, the predicted macroscopic quantities were found to be in good agreement with the 

corresponding upscaled mesoscopic results. The minor difference between the two was attributed 

to a minor difference in the macroscopic and mesoscopic values of the primary tip velocity, and 

that was attributed to the presence of an initial transient stage in the mesoscopic simulations.  
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(a) 

Figure 5-1. Two-dimensional schematic of a single equiaxed dendrite growing into an 

essentially infinite medium; the dendritic envelope and volume-equivalent sphere; and regions 

of solid (s), inter-dendritic liquid (d), and extra-dendritic liquid (e).  
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(a) 

                                    

(b) 

Figure 5-2. Schematics of the extra-dendritic liquid solute concentration profiles ahead of the 

primary tips of two adjacent dendrites, at a time instance in the (a) non-interacting stage and (b) 

interacting stage. 
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(a) (b) 

Figure 5-3. Mesoscopic grain envelopes for (a) a single grain and (b) multiple grains in the BCC 

arrangement with the primary arms growing along the x, y, and z axes. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 5-4. Mesoscopic simulation results showing solid fraction sg  (plotted in the interior of 

the envelopes) and solute concentration in the extra-dendritic liquid eC  (plotted in the exterior 

of the envelopes) at different non-dimensional times  2
0Iv ltV D  : (a)  0, (b) 0.37, (c) 

1.48, (d) 2.23, (e) 2.97, and (f) 5.94. This simulations is for the isothermal case with low 

undercooling ( 0  = 0.05) and high grain density (  0f l IvR D V   = 4.03).    
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Figure 5-5. (a-j) Upscaled mesoscopic results plotted as a function of non-dimensional time and 

(k) comparison between the mesoscopic primary tip velocities and the Ivantsov primary tip 
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velocities corresponding to the average undercooling in the extra-dendritic liquid. High and low 

grain density cases correspond to  0f l IvR D V   = 4.03 and 6.31, respectively.  
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Figure 5-6. The envelope sphericity as a function of the ratio of the primary arm length to sphere 

radius. The green curve represents our curve fit.  

 

0.5 1 1.5 2 2.5 3
0.2

0.4

0.6

0.8

1

1.2
Single grain

Start of second 
stage of growth 

Low grain density

High grain density

  1.93

6.34
1

6.02 8.08 1t spl R
  

 

Ratio of primary arm length to 
sphere radius, lt / Rsp

S
ph

er
ic

it
y,

 ψ
=

 S
sp

/ S
en

v
0  

0  



www.manaraa.com

87 
 

  

Figure 5-7. Scaled sphere growth velocity during (a) the first stage of growth as a function of 

the ratio of primary arm length to sphere radius, and during (b) the second stage of growth as a 

function of scaled Ivantsov velocity corresponding to the average undercooling in the extra-

dendritic liquid.  The green curves represent our curve fits. 
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Figure 5-8. The scaled far field undercooling as a function of the scaled length of the liquid 

region ahead of the tip up to the symmetry line between two adjacent grains. The green curve 

represents our curve fit. 
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Figure 5-9. The ratio of the envelope diffusion length to the sphere diffusion length as a function 

of the envelope sphericity for a single grain at two different initial undercoolings. The green 

curve represents our curve fit. 
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Figure 5-10. Comparison between the mesoscopic and macroscopic quantities plotted as a 

funciton of non-dimensional time. This comparison is for the isothermal case with high grain 

density and low undercooling:  0 4.03f l IvR D V      and 0 0.05  .   
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Figure 5-11. Comparison between the mesoscopic and macroscopic quantities plotted as a 

funciton of non-dimensional time. This comparison is for the isothermal case with high grain 

density and high undercooling:  0 4.03f l IvR D V      and 0 0.15  .   
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Figure 5-12. Comparison between the mesoscopic and macroscopic quantities plotted as a 

funciton of non-dimensional time. This comparison is for the isothermal case with low grain 

density and low undercooling:  0 6.31f l IvR D V      and 0 0.05  .   
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Figure 5-13. Comparison between the mesoscopic and quantities plotted as a funciton of non-

dimensional time. This comparison is for the isothermal case with low grain density and high 

undercooling:  0 6.31f l IvR D V      and 0 0.15  .   
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Figure 5-14. Comparison between the mesoscopic and macroscopic quantities plotted as a 

function of time. This comparison is for the recalescence case with high grain density: 

0.8fR mm .  
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Figure 5-15. Comparison between the mesoscopic and macroscopic quantities plotted as a 

function of time. This comparison is for the recalescence case with intermediate grain density: 

1.6fR mm . 
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Figure 5-16. Comparison between the mesoscopic and macroscopic quantities plotted as a 

function of time. This comparison is for the recalescence case with low grain density: 

2.4fR mm . 
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Chapter 6: Conclusions and future work 

 

6.1 Conclusions 

 

In this thesis, a three-phase model for simultaneous prediction of macrosegregation and CET was 

developed. This model accounts for numerous phenomena such as grain nucleation and liquid 

undercooling both behind and ahead of the columnar fronts. This model was used to develop a less 

complex, two-phase model for macrosegregation in the presence of primary tip undercooling. 

These models were used to perform columnar solidification simulations of a numerical 

solidification benchmark problem and it was found that the predictions of the two models are 

nearly identical. It was also found that the dendrite tip selection parameter *  plays a key role in 

these models. With the realistic value *  (i.e., * 0.02  ) these models account for columnar 

dendrite tip undercooling, but as its value is increased in the simulations, predictions of these 

models converge to predictions of a model that neglects undercooling. The three-phase model was 

used to perform CET simulations of the numerical solidification benchmark problem in the 

presence of melt convection. It was found that accounting for nucleation of stationary equiaxed 

grains does not change the overall macrosegregation pattern nor the form of channel segregates. 

Finally, for the first time in the field of solidification, accurate constitutive relations for macroscale 

solidification models were developed that are based on a formal mesoscale analysis on the scale 

of a representative elementary volume. This upscaling enabled us to present relations that 

incorporate changes in the shape of grains and solute diffusion conditions around them during 

growth. The models and constitutive relations we developed can now be used to predict critical 

phenomena such as macrosegregation, channel segregates, and CET in castings. 

 

6.2 Future work 

 

The research presented in this thesis can be continued in different directions. For example, the 

three-phase model for CET and macrosegregation assumes that the equiaxed grains are stationary 
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and that the inter-dendritic and extra-dendritic liquids have the same velocity. These assumptions 

can be relaxed in future works. As another example, this model and also the truncated-Scheil-type 

model can be extended for multicomponent alloys.  

 

Another interesting area of future work is to validate the three-phase and truncated-Scheil-type 

models against experimental results. For example, these models can be used to perform simulations 

of the solidification benchmark experiments involving columnar solidification of tin-lead (33, 80) 

and gallium-indium alloys (81, 82). It would be very interesting to perform these simulations in 

3D and compare the predicted shaper of channel segregates and the CET position with the 

experimental observations.  

 

The work about the constitutive relations developed in chapter 5 can also be extended by, for 

example, comparing the predictions of the macroscopic model with the upscaled mesoscopic 

results for multiple grains in a random arrangement. For this arrangement, calculating the final 

grain radius fR  will be a key factor in macroscopic simulations. This can be achieved using 

methods such as grain count or linear intercept that are commonly used in microstructure analysis 

(83). Extension of the mesoscopic model for multicomponent alloys and incorporating melt flow 

in the model are also of great interest.  
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